Skip to main content

Zinc Signaling by “Zinc Wave”

  • Chapter
  • First Online:
Zinc Signals in Cellular Functions and Disorders

Abstract

Zinc (Zn) is an essential heavy metal for all organisms. Zn homeostasis is maintained in mammalian cells through the activity of Zn transporters and Zn-permeable channels and through metallothionein expression levels. Zn is important in nucleic acid metabolism, cell replication, and tissue growth and repair. Zn deficiency is associated with a wide range of pathological conditions, such as impaired immunity, growth retardation, disorders in brain development, and delayed wound healing. Zn binds and affects the activity of several signaling molecules and of transcription factors that have a Zn-binding motif. However, whether Zn itself, as does calcium, acts as an intracellular signaling molecule has been a point of speculation. Recently, we and other groups have demonstrated that Zn does indeed act as an intracellular signaling molecule, converting extracellular stimuli to intracellular signals and controlling various cell functions. This chapter summarizes our current understanding of Zn signaling, especially with regard to the Zn wave and the role of Zn signaling in immune cells, and discusses how these processes contribute to allergic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altan-Bonnet G, Germain RN (2005) Modeling T cell antigen discrimination based on feedback control of digital ERK responses. PLoS Biol 3:e356

    PubMed  PubMed Central  Google Scholar 

  • Andersson DA, Gentry C, Moss S, Bevan S (2009) Clioquinol and pyrithione activate TRPA1 by increasing intracellular Zn2+. Proc Natl Acad Sci USA 106:8374–8379

    PubMed  CAS  PubMed Central  Google Scholar 

  • Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5:196–201

    PubMed  CAS  Google Scholar 

  • Andrews GK (2001) Cellular zinc sensors: MTF-1 regulation of gene expression. Biometals 14:223–237

    PubMed  CAS  Google Scholar 

  • Assaf SY, Chung SH (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature (Lond) 308:734–736

    CAS  Google Scholar 

  • Atar D, Backx PH, Appel MM, Gao WD, Marban E (1995) Excitation-transcription coupling mediated by zinc influx through voltage-dependent calcium channels. J Biol Chem 270:2473–2477

    PubMed  CAS  Google Scholar 

  • Berthet J, Rall TW, Sutherland EW (1957) The relationship of epinephrine and glucagon to liver phosphorylase. IV. Effect of epinephrine and glucagon on the reactivation of phosphorylase in liver homogenates. J Biol Chem 224:463–475

    PubMed  CAS  Google Scholar 

  • Besser L, Chorin E, Sekler I, Silverman WF, Atkin S, Russell JT, Hershfinkel M (2009) Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus. J Neurosci 29:2890–2901

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bichet D, Cornet V, Geib S, Carlier E, Volsen S, Hoshi T, Mori Y, De Waard M (2000) The I-II loop of the Ca2+ channel alpha1 subunit contains an endoplasmic reticulum retention signal antagonized by the beta subunit. Neuron 25:177–190

    PubMed  CAS  Google Scholar 

  • Biedermann T, Kneilling M, Mailhammer R, Maier K, Sander CA, et al. (2000) Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. J Exp Med 192: 1441–1452

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brautigan DL, Bornstein P, Gallis B (1981) Phosphotyrosyl-protein phosphatase. Specific inhibition by Zn. J Biol Chem 256:6519–6522

    PubMed  CAS  Google Scholar 

  • Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26:657–664

    PubMed  CAS  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    PubMed  CAS  Google Scholar 

  • Christine CW, Choi DW (1990) Effect of zinc on NMDA receptor-mediated channel currents in cortical neurons. J Neurosci 10:108–116

    PubMed  CAS  Google Scholar 

  • Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD (1999) Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci USA 96:1716–1721

    PubMed  CAS  PubMed Central  Google Scholar 

  • Colvin RA, Fontaine CP, Laskowski M, Thomas D (2003) Zn2+ transporters and Zn2+ homeostasis in neurons. Eur J Pharmacol 479:171–185

    PubMed  CAS  Google Scholar 

  • Corbalan-Garcia S, Gomez-Fernandez JC (2006) Protein kinase C regulatory domains: the art of decoding many different signals in membranes. Biochim Biophys Acta 1761:633–654

    PubMed  CAS  Google Scholar 

  • Cornet V, Bichet D, Sandoz G, Marty I, Brocard J, Bourinet E, Mori Y, Villaz M, De Waard M (2002) Multiple determinants in voltage-dependent P/Q calcium channels control their retention in the endoplasmic reticulum. Eur J Neurosci 16:883–895

    PubMed  Google Scholar 

  • Dal Porto JM, Gauld SB, Merrell KT, Mills D, Pugh-Bernard AE, Cambier J (2004) B cell antigen receptor signaling 101. Mol Immunol 41:599–613

    PubMed  CAS  Google Scholar 

  • Fernandes G, Nair M, Onoe K, Tanaka T, Floyd R, Good RA (1979) Impairment of cell-mediated immunity functions by dietary zinc deficiency in mice. Proc Natl Acad Sci USA 76:457–461

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fraker PJ, Caruso R, Kierszenbaum F (1982) Alteration of the immune and nutritional status of mice by synergy between zinc deficiency and infection with Trypanosoma cruzi. J Nutr 112:1224–1229

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Bush AI (2001) Synaptically released zinc: physiological functions and pathological effects. Biometals 14:353–366

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    PubMed  CAS  Google Scholar 

  • Fukada T, Kambe T (2011) Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 3:662–674

    PubMed  CAS  Google Scholar 

  • Fukada T, Civic N, Furuichi T, Shimoda S, Mishima K, Higashiyama H, Idaira Y, Asada Y, Kitamura H, Yamasaki S et al (2008) The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS One 3:e3642

    PubMed  PubMed Central  Google Scholar 

  • Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T (2011) Zinc homeostasis and signaling in health and diseases: zinc signaling. J Biol Inorg Chem 16:1123–1134

    PubMed  CAS  PubMed Central  Google Scholar 

  • Galli SJ, Tsai M, Piliponsky AM (2008) The development of allergic inflammation. Nature (Lond) 454:445–454

    CAS  Google Scholar 

  • Gomperts BD, Tatham PER, Kramer IM (2002) Signal transduction. Academic, San Diego

    Google Scholar 

  • Goode BL, Drubin DG, Barnes G (2000) Functional cooperation between the microtubule and actin cytoskeletons. Curr Opin Cell Biol 12:63–71

    PubMed  CAS  Google Scholar 

  • Gyulkhandanyan AV, Lee SC, Bikopoulos G, Dai F, Wheeler MB (2006) The Zn2+-transporting pathways in pancreatic beta-cells: a role for the L-type voltage-gated Ca2+ channel. J Biol Chem 281:9361–9372

    PubMed  CAS  Google Scholar 

  • Haase H, Maret W (2005) Protein tyrosine phosphatases as targets of the combined insulinomimetic effects of zinc and oxidants. Biometals 18:333–338

    PubMed  CAS  Google Scholar 

  • Haase H, Rink L (2009) Functional significance of zinc-related signaling pathways in immune cells. Annu Rev Nutr 29:133–152

    PubMed  CAS  Google Scholar 

  • Haase H, Hebel S, Engelhardt G, Rink L (2006) Flow cytometric measurement of labile zinc in peripheral blood mononuclear cells. Anal Biochem 352:222–230

    PubMed  CAS  Google Scholar 

  • Haase H, Ober-Blobaum JL, Engelhardt G, Hebel S, Heit A, Heine H, Rink L (2008) Zinc signals are essential for lipopolysaccharide-induced signal transduction in monocytes. J Immunol 181:6491–6502

    PubMed  CAS  Google Scholar 

  • Harwood NE, Batista FD (2008) New insights into the early molecular events underlying B cell activation. Immunity 28:609–619

    PubMed  CAS  Google Scholar 

  • Harwood NE, Batista FD (2010) Early events in B cell activation. Annu Rev Immunol 28:185–210

    PubMed  CAS  Google Scholar 

  • Hashimoto A, Okada H, Jiang A, Kurosaki M, Greenberg S, Clark EA, Kurosaki T (1998) Involvement of guanosine triphosphatases and phospholipase C-gamma2 in extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38 mitogen-activated protein kinase activation by the B cell antigen receptor. J Exp Med 188:1287–1295

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hershfinkel M, Moran A, Grossman N, Sekler I (2001) A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport. Proc Natl Acad Sci USA 98:11749–11754

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hirano T, Murakami M, Fukada T, Nishida K, Yamasaki S, Suzuki T (2008) Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule. Adv Immunol 97:149–176

    PubMed  CAS  Google Scholar 

  • Hirzel K, Muller U, Latal AT, Hulsmann S, Grudzinska J, Seeliger MW, Betz H, Laube B (2006) Hyperekplexia phenotype of glycine receptor alpha1 subunit mutant mice identifies Zn(2+) as an essential endogenous modulator of glycinergic neurotransmission. Neuron 52:679–690

    PubMed  CAS  Google Scholar 

  • Ho LH, Ruffin RE, Murgia C, Li L, Krilis SA, Zalewski PD (2004) Labile zinc and zinc transporter ZnT4 in mast cell granules: role in regulation of caspase activation and NF-kappaB translocation. J Immunol 172:7750–7760

    PubMed  CAS  Google Scholar 

  • Hojyo S, Fukada T, Shimoda S, Ohashi W, Bin BH, Koseki H, Hirano T (2011) The zinc transporter SLC39A14/ZIP14 controls G-protein coupled receptor-mediated signaling required for systemic growth. PLoS One 6:e18059

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holst B, Egerod KL, Jin C, Petersen PS, Ostergaard MV, Hald J, Sprinkel AM, Storling J, Mandrup-Poulsen T, Holst JJ et al (2009) G protein-coupled receptor 39 deficiency is associated with pancreatic islet dysfunction. Endocrinology 150:2577–2585

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hosie AM, Dunne EL, Harvey RJ, Smart TG (2003) Zinc-mediated inhibition of GABA(A) receptors: discrete binding sites underlie subtype specificity. Nat Neurosci 6:362–369

    PubMed  CAS  Google Scholar 

  • Hou S, Vigeland LE, Zhang G, Xu R, Li M, Heinemann SH, Hoshi T (2010) Zn2+ activates large conductance Ca2+-activated K+ channel via an intracellular domain. J Biol Chem 285:6434–6442

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hu H, Bandell M, Petrus MJ, Zhu MX, Patapoutian A (2009) Zinc activates damage-sensing TRPA1 ion channels. Nat Chem Biol 5:183–190

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hubbard SR, Bishop WR, Kirschmeier P, George SJ, Cramer SP, Hendrickson WA (1991) Identification and characterization of zinc binding sites in protein kinase C. Science 254:1776–1779

    PubMed  CAS  Google Scholar 

  • Ibs KH, Rink L (2003) Zinc-altered immune function. J Nutr 133:1452S–1456S

    PubMed  CAS  Google Scholar 

  • Kabu K, Yamasaki S, Kamimura D, Ito Y, Hasegawa A, Sato E, Kitamura H, Nishida K, Hirano T (2006) Zinc is required for Fc-epsilon-RI-mediated mast cell activation. J Immunol 177:1296–1305

    PubMed  CAS  Google Scholar 

  • Kakurai M, Monteforte R, Suto H, Tsai M, Nakae S, Galli SJ (2006) Mast cell-derived tumor necrosis factor can promote nerve fiber elongation in the skin during contact hypersensitivity in mice. Am J Pathol 169:1713–1721

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M (2004) Overview of mammalian zinc transporters. Cell Mol Life Sci 61:49–68

    PubMed  CAS  Google Scholar 

  • Kawakami T, Ando T, Kimura M, Wilson BS, Kawakami Y (2009) Mast cells in atopic dermatitis. Curr Opin Immunol 21:666–678

    PubMed  CAS  PubMed Central  Google Scholar 

  • Keen CL, Gershwin ME (1990) Zinc deficiency and immune function. Annu Rev Nutr 10:415–431

    PubMed  CAS  Google Scholar 

  • Kikuchi K (2010) Design, synthesis and biological application of chemical probes for bio-imaging. Chem Soc Rev 39:2048–2053

    PubMed  CAS  Google Scholar 

  • Kitamura H, Morikawa H, Kamon H, Iguchi M, Hojyo S, Fukada T, Yamashita S, Kaisho T, Akira S, Murakami M, Hirano T (2006) Toll-like receptor-mediated regulation of zinc homeostasis influences dendritic cell function. Nat Immunol 7:971–977

    PubMed  CAS  Google Scholar 

  • Klemm S, Gutermuth J, Hultner L, Sparwasser T, Behrendt H, Peschel C, Mak TW, Jakob T, Ruland J (2006) The Bcl10-Malt1 complex segregates Fc epsilon RI-mediated nuclear factor kappa B activation and cytokine production from mast cell degranulation. J Exp Med 203:337–347

    PubMed  PubMed Central  Google Scholar 

  • Kurosaki T (2011) Regulation of BCR signaling. Mol Immunol 48:1287–1291

    PubMed  CAS  Google Scholar 

  • Lee JY, Cole TB, Palmiter RD, Suh SW, Koh JY (2002) Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc Natl Acad Sci USA 99:7705–7710

    PubMed  CAS  PubMed Central  Google Scholar 

  • Legendre P, Westbrook GL (1990) The inhibition of single N-methyl-d-aspartate-activated channels by zinc ions on cultured rat neurones. J Physiol 429:429–449

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lengyel I, Fieuw-Makaroff S, Hall AL, Sim AT, Rostas JA, Dunkley PR (2000) Modulation of the phosphorylation and activity of calcium/calmodulin-dependent protein kinase II by zinc. J Neurochem 75:594–605

    PubMed  CAS  Google Scholar 

  • Levy S, Beharier O, Etzion Y, Mor M, Buzaglo L, Shaltiel L, Gheber LA, Kahn J, Muslin AJ, Katz A et al (2009) Molecular basis for zinc transporter 1 action as an endogenous inhibitor of L-type calcium channels. J Biol Chem 284:32434–32443

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li Y, Hough CJ, Suh SW, Sarvey JM, Frederickson CJ (2001) Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation. J Neurophysiol 86:2597–2604

    PubMed  CAS  Google Scholar 

  • Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176

    PubMed  Google Scholar 

  • Lopantsev V, Wenzel HJ, Cole TB, Palmiter RD, Schwartzkroin PA (2003) Lack of vesicular zinc in mossy fibers does not affect synaptic excitability of CA3 pyramidal cells in zinc transporter 3 knockout mice. Neuroscience 116:237–248

    PubMed  CAS  Google Scholar 

  • Lu YM, Taverna FA, Tu R, Ackerley CA, Wang YT, Roder J (2000) Endogenous Zn(2+) is required for the induction of long-term potentiation at rat hippocampal mossy fiber-CA3 synapses. Synapse 38:187–197

    PubMed  CAS  Google Scholar 

  • Mayer ML, Vyklicky L Jr (1989) The action of zinc on synaptic transmission and neuronal excitability in cultures of mouse hippocampus. J Physiol 415:351–365

    PubMed  CAS  PubMed Central  Google Scholar 

  • Metz M, Grimbaldeston MA, Nakae S, Piliponsky AM, Tsai M, Galli SJ (2007) Mast cells in the promotion and limitation of chronic inflammation. Immunol Rev 217:304–328

    PubMed  CAS  Google Scholar 

  • Murakami M, Hirano T (2008) Intracellular zinc homeostasis and zinc signaling. Cancer Sci 99:1515–1522

    PubMed  CAS  Google Scholar 

  • Murakami K, Whiteley MK, Routtenberg A (1987) Regulation of protein kinase C activity by cooperative interaction of Zn2+ and Ca2+. J Biol Chem 262:13902–13906

    PubMed  CAS  Google Scholar 

  • Nechushtan H, Leitges M, Cohen C, Kay G, Razin E (2000) Inhibition of degranulation and interleukin-6 production in mast cells derived from mice deficient in protein kinase C-beta. Blood 95:1752–1757

    PubMed  CAS  Google Scholar 

  • Nishida K, Yamasaki S, Ito Y, Kabu K, Hattori K, Tezuka T, Nishizumi H, Kitamura D, Goitsuka R, Geha RS et al (2005) FcεRI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane. J Cell Biol 170:115–126

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nishida K, Hasegawa A, Nakae S, Oboki K, Saito H, Yamasaki S, Hirano T (2009) Zinc transporter Znt5/Slc30a5 is required for the mast cell-mediated delayed-type allergic reaction but not the immediate-type reaction. J Exp Med 206:1351–1364

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nishida K, Fukada T, Yamasaki S, Murakami M, Hirano T (2011) Zinc in allergy, autoimmune, and hard and connective tissue diseases. IOS Press, Netherlands

    Google Scholar 

  • Oancea E, Teruel MN, Quest AF, Meyer T (1998) Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J Cell Biol 140:485–498

    PubMed  CAS  PubMed Central  Google Scholar 

  • Palacios EH, Weiss A (2004) Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 23:7990–8000

    PubMed  CAS  Google Scholar 

  • Palmiter RD (2004) Protection against zinc toxicity by metallothionein and zinc transporter 1. Proc Natl Acad Sci USA 101:4918–4923

    PubMed  CAS  PubMed Central  Google Scholar 

  • Park JA, Koh JY (1999) Induction of an immediate early gene EGR-1 by zinc through extracellular signal-regulated kinase activation in cortical culture: its role in zinc-induced neuronal death. J Neurochem 73:450–456

    PubMed  CAS  Google Scholar 

  • Perry DK, Smyth MJ, Stennicke HR, Salvesen GS, Duriez P, Poirier GG, Hannun YA (1997) Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. J Biol Chem 272:18530–18533

    PubMed  CAS  Google Scholar 

  • Prasad AS (1991) Discovery of human zinc deficiency and studies in an experimental human model. Am J Clin Nutr 53:403–412

    PubMed  CAS  Google Scholar 

  • Prasad AS (1995) Zinc: an overview. Nutrition 11:93–99

    PubMed  CAS  Google Scholar 

  • Prost AL, Bloc A, Hussy N, Derand R, Vivaudou M (2004) Zinc is both an intracellular and extracellular regulator of KATP channel function. J Physiol 559:157–167

    PubMed  CAS  PubMed Central  Google Scholar 

  • Qian J, Noebels JL (2005) Visualization of transmitter release with zinc fluorescence detection at the mouse hippocampal mossy fibre synapse. J Physiol 566:747–758

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ramadan O, Qu Y, Wadgaonkar R, Baroudi G, Karnabi E, Chahine M, Boutjdir M (2009) Phosphorylation of the consensus sites of protein kinase A on alpha1D L-type calcium channel. J Biol Chem 284:5042–5049

    PubMed  CAS  PubMed Central  Google Scholar 

  • Riccioni G, D’Orazio N (2005) The role of selenium, zinc and antioxidant vitamin supplementation in the treatment of bronchial asthma: adjuvant therapy or not? Expert Opin Invest Drugs 14:1145–1155

    CAS  Google Scholar 

  • Richter M, Bonneau R, Girard MA, Beaulieu C, Larivee P (2003a) Zinc status modulates bronchopulmonary eosinophil infiltration in a murine model of allergic inflammation. Chest 123:446S

    PubMed  Google Scholar 

  • Richter M, Cantin AM, Beaulieu C, Cloutier A, Larivee P (2003b) Zinc chelators inhibit eotaxin, RANTES, and MCP-1 production in stimulated human airway epithelium and fibroblasts. Am J Physiol Lung Cell Mol Physiol 285:L719–L729

    PubMed  CAS  Google Scholar 

  • Rink L, Gabriel P (2000) Zinc and the immune system. Proc Nutr Soc 59:541–552

    PubMed  CAS  Google Scholar 

  • Schnapp BJ (2003) Trafficking of signaling modules by kinesin motors. J Cell Sci 116:2125–2135

    PubMed  CAS  Google Scholar 

  • Sensi SL, Canzoniero LM, Yu SP, Ying HS, Koh JY, Kerchner GA, Choi DW (1997) Measurement of intracellular free zinc in living cortical neurons: routes of entry. J Neurosci 17:9554–9564

    PubMed  CAS  Google Scholar 

  • Sensi SL, Paoletti P, Bush AI, Sekler I (2009) Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10:780–791

    PubMed  CAS  Google Scholar 

  • Sharir H, Zinger A, Nevo A, Sekler I, Hershfinkel M (2010) Zinc released from injured cells is acting via the Zn2+-sensing receptor, ZnR, to trigger signaling leading to epithelial repair. J Biol Chem 285:26097–26106

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shumilina E, Lam RS, Wolbing F, Matzner N, Zemtsova IM, Sobiesiak M, Mahmud H, Sausbier U, Biedermann T, Ruth P et al (2008) Blunted IgE-mediated activation of mast cells in mice lacking the Ca2+-activated K+ channel KCa3.1. J Immunol 180:8040–8047

    PubMed  CAS  Google Scholar 

  • Smart TG, Hosie AM, Miller PS (2004) Zn2+ ions: modulators of excitatory and inhibitory synaptic activity. Neuroscientist 10:432–442

    PubMed  CAS  Google Scholar 

  • Smith AJ, Pfeiffer JR, Zhang J, Martinez AM, Griffiths GM, Wilson BS (2003) Microtubule-dependent transport of secretory vesicles in RBL-2H3 cells. Traffic 4:302–312

    PubMed  CAS  Google Scholar 

  • Suto H, Nakae S, Kakurai M, Sedgwick JD, Tsai M, Galli SJ (2006) Mast cell-associated TNF promotes dendritic cell migration. J Immunol 176:4102–4112

    PubMed  CAS  Google Scholar 

  • Suzuki T, Ishihara K, Migaki H, Matsuura W, Kohda A, Okumura K, Nagao M, Yamaguchi-Iwai Y, Kambe T (2005a) Zinc transporters, ZnT5 and ZnT7, are required for the activation of alkaline phosphatases, zinc-requiring enzymes that are glycosylphosphatidylinositol-anchored to the cytoplasmic membrane. J Biol Chem 280:637–643

    PubMed  CAS  Google Scholar 

  • Suzuki T, Ishihara K, Migaki H, Nagao M, Yamaguchi-Iwai Y, Kambe T (2005b) Two different zinc transport complexes of cation diffusion facilitator proteins localized in the secretory pathway operate to activate alkaline phosphatases in vertebrate cells. J Biol Chem 280:30956–30962

    PubMed  CAS  Google Scholar 

  • Tamaki M, Fujitani Y, Hara A, Uchida T, Tamura Y, Takeno K, Kawaguchi M, Watanabe T, Ogihara T, Fukunaka A et al (2013) The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J Clin Invest 123:4513–4524

    PubMed  CAS  PubMed Central  Google Scholar 

  • Taniguchi M, Fukunaka A, Hagihara M, Watanabe K, Kamino S, Kambe T, Enomoto S, Hiromura M (2013) Essential role of the zinc transporter ZIP9/SLC39A9 in regulating the activations of Akt and Erk in B-cell receptor signaling pathway in DT40 cells. PLoS One 8:e58022

    PubMed  CAS  PubMed Central  Google Scholar 

  • Taylor KM, Vichova P, Jordan N, Hiscox S, Hendley R, Nicholson RI (2008) ZIP7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antihormone-resistant breast cancer cells. Endocrinology 149:4912–4920

    PubMed  CAS  Google Scholar 

  • Taylor KM, Hiscox S, Nicholson RI, Hogstrand C, Kille P (2012) Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal 5:ra11

    PubMed  PubMed Central  Google Scholar 

  • Telford WG, Fraker PJ (1995) Preferential induction of apoptosis in mouse CD4 + CD8+ alpha beta TCRloCD3 epsilon lo thymocytes by zinc. J Cell Physiol 164:259–270

    PubMed  CAS  Google Scholar 

  • Thambiayya K, Wasserloos KJ, Huang Z, Kagan VE, St. Croix CM, Pitt BR (2011) LPS-induced decrease in intracellular labile zinc, [Zn] i , contributes to apoptosis in cultured sheep pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 300:L624–L632

    PubMed  CAS  PubMed Central  Google Scholar 

  • Torres-Alanis O, Garza-Ocanas L, Pineyro-Lopez A (1995) Evaluation of urinary mercury excretion after administration of 2,3-dimercapto-1-propane sulfonic acid to occupationally exposed men. J Toxicol Clin Toxicol 33:717–720

    PubMed  CAS  Google Scholar 

  • Truong-Tran AQ, Ruffin RE, Zalewski PD (2000) Visualization of labile zinc and its role in apoptosis of primary airway epithelial cells and cell lines. Am J Physiol Lung Cell Mol Physiol 279:L1172–L1183

    PubMed  CAS  Google Scholar 

  • Ueno S, Tsukamoto M, Hirano T, Kikuchi K, Yamada MK, Nishiyama N, Nagano T, Matsuki N, Ikegaya Y (2002) Mossy fiber Zn2+ spillover modulates heterosynaptic N-methyl-d-aspartate receptor activity in hippocampal CA3 circuits. J Cell Biol 158:215–220

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vallee BL (1995) The function of metallothionein. Neurochem Int 27:23–33

    PubMed  CAS  Google Scholar 

  • Vallee BL, Auld DS (1993) Cocatalytic zinc motifs in enzyme catalysis. Proc Natl Acad Sci USA 90:2715–2718

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    PubMed  CAS  Google Scholar 

  • Vennekens R, Olausson J, Meissner M, Bloch W, Mathar I, Philipp SE, Schmitz F, Weissgerber P, Nilius B, Flockerzi V, Freichel M (2007) Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat Immunol 8:312–320

    PubMed  CAS  Google Scholar 

  • Vig M, Kinet JP (2009) Calcium signaling in immune cells. Nat Immunol 10:21–27

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vogt K, Mellor J, Tong G, Nicoll R (2000) The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 26:187–196

    PubMed  CAS  Google Scholar 

  • Weiss JH, Sensi SL (2000) Ca2+-Zn2+ permeable AMPA or kainate receptors: possible key factors in selective neurodegeneration. Trends Neurosci 23:365–371

    PubMed  CAS  Google Scholar 

  • Xie X, Smart TG (1994) Modulation of long-term potentiation in rat hippocampal pyramidal neurons by zinc. Pflugers Arch 427:481–486

    PubMed  CAS  Google Scholar 

  • Xu TF, Wang XL, Yang JZ, Hu XY, Wu WF, Guo L, Kang LD, Zhang LY (2009) Overexpression of Zip-2 mRNA in the leukocytes of asthmatic infants. Pediatr Pulmonol 44:763–767

    PubMed  Google Scholar 

  • Yamasaki S, Sakata-Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, Kurosaki T, Yamashita S, Tokunaga M, Nishida K, Hirano T (2007) Zinc is a novel intracellular second messenger. J Cell Biol 177:637–645

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yamasaki S, Hasegawa A, Hojyo S, Ohashi W, Fukada T, Nishida K, Hirano T (2012) A novel role of the L-type calcium channel alpha1D subunit as a gatekeeper for intracellular zinc signaling: zinc wave. PLoS One 7:e39654

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yamashita S, Miyagi C, Fukada T, Kagara N, Che YS, Hirano T (2004) Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature (Lond) 429:298–302

    CAS  Google Scholar 

  • Yasuda S, Miyazaki T, Munechika K, Yamashita M, Ikeda Y, Kamizono A (2007) Isolation of Zn2+ as an endogenous agonist of GPR39 from fetal bovine serum. J Recept Signal Transduct Res 27:235–246

    PubMed  CAS  Google Scholar 

  • Yu M, Lee WW, Tomar D, Pryshchep S, Czesnikiewicz-Guzik M, Lamar DL, Li G, Singh K, Tian L, Weyand CM, Goronzy JJ (2011) Regulation of T cell receptor signaling by activation-induced zinc influx. J Exp Med 208:775–785

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zalewski PD, Truong-Tran AQ, Grosser D, Jayaram L, Murgia C, Ruffin RE (2005) Zinc metabolism in airway epithelium and airway inflammation: basic mechanisms and clinical targets. A review. Pharmacol Ther 105:127–149

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keigo Nishida Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nishida, K., Yamasaki, S. (2014). Zinc Signaling by “Zinc Wave”. In: Fukada, T., Kambe, T. (eds) Zinc Signals in Cellular Functions and Disorders. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55114-0_5

Download citation

Publish with us

Policies and ethics