Skip to main content

Discovery of the Face-Centered Cubic Ruthenium Nanoparticles: Facile Size-Controlled Synthesis Using the Chemical Reduction Method

  • Chapter
  • First Online:
Creation of New Metal Nanoparticles and Their Hydrogen-Storage and Catalytic Properties

Part of the book series: Springer Theses ((Springer Theses))

  • 1139 Accesses

Abstract

The author reports the first discovery of pure face-centered cubic (fcc) Ru nanoparticles. Although the fcc structure does not exist in the bulk Ru phase diagram, fcc Ru was obtained at room temperature (RT) because of the nanosize effect. The author succeeded in separately synthesizing uniformly sized nanoparticles of both fcc and hcp Ru having a diameter from 2 to 5.5 nm by simple chemical reduction methods with different metal precursors. Both of the prepared fcc and hcp nanoparticles were supported on γ-Al2O3, and their catalytic activity in CO oxidation was investigated. The catalytic activity of the Ru nanoparticles in CO oxidation depends on their structure and size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pettifor DG (1977) A physicist’s view of the energetics of transition metals. Calphad 1:305–324

    Article  CAS  Google Scholar 

  2. Saunders N, Miodownik AP, Dinsdale AT (1988) Metastable lattice stabilities for the elements. Calphad 12:351–374

    Article  CAS  Google Scholar 

  3. Xia H, Parthasarathy G, Luo H, Vohra YK, Ruoff AL (1990) Crystal structures of group IVa metals at ultrahigh pressures. Phys Rev B 42:6736–6738

    Article  CAS  Google Scholar 

  4. Hanfland M, Syassen K, Christensen NE, Novikov DL (2000) New high-pressure phases of lithium. Nature 408:174–178

    Article  CAS  Google Scholar 

  5. Shimizu K, Ishikawa H, Takao D, Yagi T, Amaya K (2002) Superconductivity in compressed lithium at 20 K. Nature 419:597–599

    Article  CAS  Google Scholar 

  6. Errandonea D, Meng Y, Häusermann D, Uchida T (2003) Study of the phase transformations and equation of state of magnesium by synchrotron x-ray diffraction. J Phys Condens Matter 15:1277–1289

    Article  CAS  Google Scholar 

  7. Ma Y, Eremets M, Oganov AR, Xie Y, Trojan I, Medvedev S, Lyakhov AO, Valle M, Prakapenka V (2009) Transparent dense sodium. Nature 458:182–185

    Article  CAS  Google Scholar 

  8. Liu Q, Fan C, Zhang R (2009) First-principles study of high-pressure structural phase transitions of magnesium. J Appl Phys 105:123505

    Article  Google Scholar 

  9. Tateno S, Hirose K, Ohishi Y, Tatsumi Y (2010) The structure of iron in earth’s inner core. Science 330:359–361

    Article  CAS  Google Scholar 

  10. Stixrude L (2012) Structure of Iron to 1 Gbar and 40,000 K. Phys Rev Lett 108:055505

    Article  Google Scholar 

  11. Hrubiak R, Drozd V, Karbasi A, Saxena SK (2012) High P–T phase transitions and P–V–T equation of state of hafnium. J Appl Phys 111:112616

    Article  Google Scholar 

  12. Xiong S, Qi W, Huang B, Wang M, Li Z, Liang S (2012) Size-temperature phase diagram of titanium nanosolids. J Phys Chem C 116:237–241

    Article  CAS  Google Scholar 

  13. Jesser WA, Shneck RZ, Gile WW (2004) Solid-liquid equilibria in nanoparticles of Pb-Bi alloys. Phys Rev B 69:144121

    Article  Google Scholar 

  14. Calvo F, Doye JPK (2004) Pressure effects on the structure of nanoclusters. Phys Rev B 69:125414–125416

    Google Scholar 

  15. Dong XL, Choi CJ, Kim BK (2002) Chemical synthesis of Co nanoparticles by chemical vapor condensation. Scr Mater 47:857–861

    Article  CAS  Google Scholar 

  16. Ling T, Xie L, Zhu J, Yu H, Ye H, Yu R, Cheng Z, Liu L, Yang G, Cheng Z, Wang Y, Ma X (2009) Icosahedral face-centered cubic fe nanoparticles: facile synthesis and characterization with aberration-corrected TEM. Nano Lett 9:1572–1576

    Article  CAS  Google Scholar 

  17. Kim H, Kaufman MJ, Sigmund WM, Jacques D, Andrews R (2003) Observation and formation mechanism of stable face-centered-cubic Fe nanorods in carbon nanotubes. J Mater Res 18:1104–1108

    Article  CAS  Google Scholar 

  18. Perkas N, Teo J, Shen S, Wang Z, Highfield J, Zhong Z, Gedaken A (2011) Supported Ru catalysts prepared by two sonication-assisted methods for preferential oxidation of CO in H2. Phys Chem Chem Phys 13:15690–15698

    Article  CAS  Google Scholar 

  19. Carballo JMG, Yang J, Holmen A, García-Rodríguez S, Rojas S, Ojeda M, Fierro JLG (2011) Catalytic effects of ruthenium particle size on the fischer-tropsch synthesis. J Catal 284:102–108

    Article  CAS  Google Scholar 

  20. Kim YH, Yim S, Park ED (2012) Selective CO oxidation in a hydrogen-rich stream over Ru/SiO2 catal. Today 185:143–150

    Article  CAS  Google Scholar 

  21. Strebel C, Murphy S, Nielsen RM, Nielsen JH, Chorkendorff I (2012) Probing the active sites for CO dissociation on ruthenium nanoparticles. Phys Chem Chem Phys 14:8005–8012

    Article  CAS  Google Scholar 

  22. Wendt S, Knapp M, Over H (2004) The role of weakly bound on-top oxygen in the catalytic CO oxidation reaction over RuO2(110). J Am Chem Soc 126:1537–1541

    Article  CAS  Google Scholar 

  23. Ertl G (2008) Reactions at surfaces: from atoms to complexity (nobel lecture). Angew Chem Int Ed 47:3524–3535

    Article  CAS  Google Scholar 

  24. Xie X, Li Y, Liu Z, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458:746–749

    Article  CAS  Google Scholar 

  25. Kaden WE, Wu T, Kunkel WA, Anderson SL (2009) Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326:826–829

    Article  CAS  Google Scholar 

  26. Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7:333–338

    Article  CAS  Google Scholar 

  27. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3:634–641

    Article  CAS  Google Scholar 

  28. Roth C, Benker N, Buhrmester T, Mazurek M, Loster M, Fuess H, Koningsberger DC, Ramaker DE (2005) Determination of O[H] and CO coverage and adsorption sites on PtRu electrodes in an operating PEM fuel cell. J Am Chem Soc 127:14607–14615

    Article  CAS  Google Scholar 

  29. Jiang H, Liu B, Akita T, Haruta M, Sakurai H, Xu Q (2009) Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J Am Chem Soc 131:11302–11303

    Article  CAS  Google Scholar 

  30. Kim HY, Lee HM, Henkelman G (2012) CO oxidation mechanism on CeO2-supported Au nanoparticles. J Am Chem Soc 134:1560–1570

    Article  CAS  Google Scholar 

  31. Kobayashi M, Kai T, Takano N, Shiiki K (1995) The possibility of ferromagnetic BCC ruthenium. J Phys Condens Matter 7:1835–1842

    Article  CAS  Google Scholar 

  32. Watanabe S, Komine T, Kai T, Shiiki K (2000) First-principle band calculation of ruthenium for various phases. J Magn Magn Mater 220:277–284

    Article  CAS  Google Scholar 

  33. Lim B, Jiang M, Tao J, Camargo PHC, Zhu Y, Xia Y (2009) Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv Funct Mater 19:189–200

    Article  CAS  Google Scholar 

  34. González AL, Noguez C, Ortiz GP, Rodríguez-Gattorno G (2005) Optical absorbance of colloidal suspensions of silver polyhedral nanoparticles. J Phys Chem B 109:17512–17517

    Article  Google Scholar 

  35. Grass ME, Zhang Y, Butcher DR, Park JY, Li Y, Bluhm H, Bratlie KM, Zhang T, Somorjai GA (2008) A reactive oxide overlayer on rhodium nanoparticles during CO oxidation and its size dependence studied by in situ ambient-pressure x-ray photoelectron spectroscopy. Angew Chem Int Ed 47:8893–8896

    Article  CAS  Google Scholar 

  36. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Gent MJ, Delmon B (1993) Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J Catal 144:175–192

    Article  CAS  Google Scholar 

  37. McCarthy E, Zahradnik J, Kuczynski GC, Carberry JJ (1975) Some unique aspects of CO oxidation on supported Pt. J Catal 39:29–35

    Article  CAS  Google Scholar 

  38. Over H, Kim YD, Seitsonen AP, Wendt S, Lundgren E, Schmid M, Varga P, Morgante A, Ertl G (2000) Atomic-scale structure and catalytic reactivity of the RuO2(110) surface. Science 287:1474–1476

    Article  CAS  Google Scholar 

  39. Gong X, Liu Z, Raval R, Hu P (2004) A systematic study of CO oxidation on metals and metal oxides: density functional theory calculations. J Am Chem Soc 126:8–9

    Article  CAS  Google Scholar 

  40. Reuter K, Scheffler M (2003) Composition and structure of the RuO2(110) surface in an O2 and CO environment: Implications for the catalytic formation of CO2 Phys. Rev B 68:045407–045411

    Article  Google Scholar 

  41. Teranishi T, Kurita R, Miyake M (2000) Shape Control of Pt Nanoparticles. J Inorg Organomet Polym 10:145–156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Kusada .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kusada, K. (2014). Discovery of the Face-Centered Cubic Ruthenium Nanoparticles: Facile Size-Controlled Synthesis Using the Chemical Reduction Method. In: Creation of New Metal Nanoparticles and Their Hydrogen-Storage and Catalytic Properties. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55087-7_4

Download citation

Publish with us

Policies and ethics