Skip to main content

Systematic Study of the Hydrogen Storage Properties and the CO-oxidizing Abilities of Solid Solution Alloy Nanoparticles in an Immiscible Pd–Ru System

  • Chapter
  • First Online:
Creation of New Metal Nanoparticles and Their Hydrogen-Storage and Catalytic Properties

Part of the book series: Springer Theses ((Springer Theses))

  • 733 Accesses

Abstract

PdxRu1–x solid solution alloy nanoparticles were successfully synthesized over the whole composition range through the chemical reduction method, although Ru and Pd are immiscible at the atomic level in the bulk state. From the XRD measurement, it was found that the dominant structure of PdxRu1–x changes from fcc to hcp with increasing Ru content. The structures of PdxRu1–x nanoparticles in the Pd composition range of 30–70 % consisted of both solid solution fcc and hcp structures, and both of two phases coexist in a single particle. In addition, the reaction of hydrogen with the PdxRu1–x nanoparticles changed from exothermic to endothermic as the Ru content increased. Furthermore, the prepared PdxRu1–x nanoparticles demonstrated extremely enhanced CO-oxidizing catalytic activity; Pd0.5Ru0.5 nanoparticles exhibit the highest catalytic activity. This activity is much higher than that of practically-used CO-oxidizing catalyst Ru and that of neighboring Rh, between Ru and Pd.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tripathi SN, Bharadwaj SR, Chandransekharaiah MS (1996) The Rh–Ru system (rhodium–ruthenium). J Phase Equil 17:362–365

    Article  CAS  Google Scholar 

  2. Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (1996) Binary alloy phase diagrams. ASM International, Materials Park

    Google Scholar 

  3. Tripathi SN, Bharadwaj SR, Dharwadkar SR (1993) The Pd–Ru system (palladium–ruthenium). J Phase Equil 14:638–642

    Article  CAS  Google Scholar 

  4. Kusada K, Yamauchi M, Kobayashi H, Kitagawa H, Kubota Y (2010) Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd. J Am Chem Soc 132:15896–15898

    Article  CAS  Google Scholar 

  5. Papaconstantopoulos DA, Klein BM, Economou EN, Boyer LL (1978) Band structure and superconductivity of PdDx and PdHx. Phys Rev B 17:141–150

    Article  CAS  Google Scholar 

  6. Gelatt CD, Ehren-reich H, Weiss JA (1978) Transition-metal hydrides: electronic structure and the heats of formation. Phys Rev B 17:1940–1957

    Article  CAS  Google Scholar 

  7. Vuillemin JJ, Priestly MG (1965) De Haas-Van Alphen effect and fermi surface in palladium. Phys Rev Lett 14:307–308

    Article  CAS  Google Scholar 

  8. Mueller FM, Freeman AJ, Dimmock JO, Furdyna AM (1970) Electronic structure of palladium. Phys Rev B 1:4617–4634

    Article  Google Scholar 

  9. Wicke E (1984) Electronic structure and properties of hydrides of 3D and 4D metals and intermetallics. J Less Common Met 101:17–33

    Article  CAS  Google Scholar 

  10. Alefeld G, Vӧlkl J (1978) Hydrogen in metals I. Springer, Berlin, p 108

    Google Scholar 

  11. Alefeld G, Vӧlkl J (1978) Hydrogen in metals II. Springer, Berlin, p 73

    Google Scholar 

  12. Ke X, Kramer GJ, Løvvik OM (2004) The influence of electronic structure on hydrogen absorption in palladium alloys. J Phys Condens Matter 16:6267–6278

    Article  CAS  Google Scholar 

  13. Flanagan TB, Wang D, Noh H (1997) The effect of cycling through the hydride phase on isotherms for fcc Pd-rich alloys. J Alloys Compd 253–254:216–220

    Article  Google Scholar 

  14. Barlag H, Opara L, Züchner H (2002) Hydrogen diffusion in palladium based fcc alloys. J Alloys Compd 330–332:434–437

    Article  Google Scholar 

  15. Sonwane CG, Wilcox J, Ma YH (2006) Solubility of hydrogen in PdAg and PdAu binary alloys using density functional theory. J Phys Chem B 110:24549–24558

    Article  CAS  Google Scholar 

  16. Cabrera AL, Morales EL, Hansen J, Schuller K (1995) Structural changes induced by hydrogen absorption in palladium and palladium-ruthenium alloys. Appl Phys Lett 66:1216–1218

    Article  CAS  Google Scholar 

  17. Frölich K, Severin HG, Hempelmann R, Wicke E (1980) Local magnetic moments of ruthenium in palladium/ruthenium/hydrogen alloys. Z Phys Chem Neue Fol 119:33–52

    Article  Google Scholar 

  18. Szafranski AW (2003) Influence of hydrogen on the thermoelectronic power of palladium alloyed with neighbouring elements: I. Pd/Ru/H and Pd/Rh/H alloys. J Phys Condens Matter 15:3583–3592

    Article  CAS  Google Scholar 

  19. Perkas N, Teo J, Shen S, Wang Z, Highfield J, Zhong Z, Gedanken A (2011) Supported Ru catalysts prepared by two sonication-assisted methods for preferential oxidation of CO in H2. Phys Chem Chem Phys 13:15690–15698

    Article  CAS  Google Scholar 

  20. Bowker M (2007) Automotive catalysis studied by surface science. Chem Soc Rev 37:2204–2211

    Article  Google Scholar 

  21. Grass ME, Zhang Y, Butcher DR, Park JY, Li Y, Bluhm H, Bratlie KM, Zhang T, Somorjai GA (2008) A reactive oxide overlayer on rhodium nanoparticles during CO oxidation and its size dependence studied by in situ ambient-pressure X-ray photoelectron spectroscopy. Angew Chem Int Ed 47:8893–8896

    Article  CAS  Google Scholar 

  22. Zhang Y, Grass ME, Huang W, Somorjai GA (2010) Seedless polyol synthesis and CO oxidation activity of monodisperse (111)- and (100)-oriented rhodium nanocrystals in sub-10 nm sizes. Langmuir 26:16463–16468

    Article  CAS  Google Scholar 

  23. Joo SH, Park JK, Renzas JR, Butcher DR, Huang W, Somorjai GA (2010) Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation. Nano Lett 10:2709–2713

    Article  CAS  Google Scholar 

  24. Ertl G (2008) Reactions at surfaces: from atoms to complexity (Nobel lecture). Angew Chem Int Ed 47:3524–3535

    Article  CAS  Google Scholar 

  25. Xiao L, Zhuang L, Liu Y, Lu J, Abruna HD (2009) Activating Pd by morphology tailoring for oxygen reduction. J Am Chem Soc 131:602–608

    Article  CAS  Google Scholar 

  26. Newton MA, Belver-Coldeira C, Martínez-Arias A, Fernández-García M (2007) Dynamic in situ observation of rapid size and shape change of supported Pd nanoparticles during CO/NO cycling. Nat Mater 6:528–532

    Article  CAS  Google Scholar 

  27. Schultz NE, Gherman BE, Cramer CJ, Truhlar DG (2006) PdnCO (n = 1,2): accurate Ab initio bond energies, geometries, and dipole moments and the applicability of density functional theory for fuel cell modeling. J Phys Chem B 110:24030–24046

    Article  CAS  Google Scholar 

  28. Lee HC, Potapova Y, Lee D (2012) A core-shell structured, metal–ceramic composite-supported Ru catalyst for methane steam reforming. J Power Sources 216:256–260

    Article  CAS  Google Scholar 

  29. McFarland E (2012) Unconventional chemistry for unconventional natural gas. Science 338:340–342

    Article  CAS  Google Scholar 

  30. Beutl M, Lesnik J (2001) Adsorption dynamics of hydrogen and carbon monoxide on V/Pd(111) alloy surface. Surf Sci 482–485:353–358

    Article  Google Scholar 

  31. Abdelsayed V, Aljarash A, El-Shall MS, Othman ZAA, Alghamdi AH (2009) Microwave synthesis of bimetallic nanoalloys and CO oxidation on ceria-supported nanoalloys. Chem Mater 21:2825–2834

    Article  CAS  Google Scholar 

  32. Renzas JR, Huang W, Zhang Y, Grass ME, Hoang DT, Alayoglu S, Butcher DR, Tao F, Liu Z, Somorjai GA (2011) Rh1−xPdx nanoparticle composition dependence in CO oxidation by oxygen: catalytic activity enhancement in bimetallic systems. Phys Chem Chem Phys 13:2556–2562

    Article  CAS  Google Scholar 

  33. Nakamura E, Sato K (2011) Managing the scarcity of chemical elements. Nat Mater 10:158–161

    Article  CAS  Google Scholar 

  34. Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M (2010) Atomic-level Pd-Pt alloying and largely enhanced hydrogen-storage capacity in bimetallic nanoparticles reconstructed from core/shell structure by a process of hydrogen absorption/desorption. J Am Chem Soc 132:5576–5577

    Article  CAS  Google Scholar 

  35. Kakade BA, Tamaki T, Ohashi H, Yamaguchi T (2012) Highly active bimetallic PdPt and CoPt nanocrystals for methanol electro-oxidation. J Phys Chem C 116:7464–7470

    Article  CAS  Google Scholar 

  36. Kobayashi H, Morita H, Yamauchi M, Ikeda R, Kitagawa H, Kubota Y, Kato M, Takata M, Toh S, Matsumura S (2012) Nanosize-induced drastic drop in equilibrium hydrogen pressure for hydride formation and structural stabilization in Pd-Rh solid-solution alloys. J Am Chem Soc 134:12390–12394

    Article  CAS  Google Scholar 

  37. Petkov V, Wanjala BN, Loukrakpam R, Luo J, Yang L, Zhong C, Shastri S (2012) Pt–Au alloying at the nanoscale. Nano Lett 12:4289–4299

    Article  CAS  Google Scholar 

  38. Hernández-Fernández P, Rojas S, Ocón P, Gómez de la Fuente JL, San Fabián J, Sanza J, Peña MA, García-García FJ, Terreros P, Fierro JLG (2007) Influence of the preparation route of bimetallic Pt–Au nanoparticle electrocatalysts for the oxygen reduction reaction. J Phys Chem C 111:2913–2923

    Article  Google Scholar 

  39. Essinger-Hileman ER, DeCicco D, Bondi JF, Schaak RE (2011) Aqueous room-temperature synthesis of Au–Rh, Au–Pt, Pt–Rh, and Pd–Rh alloy nanoparticles: fully tunable compositions within the miscibility gaps. J Mater Chem 21:11599–11604

    Article  CAS  Google Scholar 

  40. Denton AR, Ashcroft NW (1991) Vegard’s law. Phys Rev A 43:3161–3164

    Article  CAS  Google Scholar 

  41. Fukai Y (2005) The metal-hydrogen system, basic bulk properties, 2nd edn. Springer, Berlin

    Google Scholar 

  42. Yamauchi M, Ikeda R, Kitagawa H, Takata M (2008) Nanosize effects on hydrogen storage in palladium. J Phys Chem C 112:3294–3299

    Article  CAS  Google Scholar 

  43. Xu J, White T, Li P, He C, Yu J, Yuan W, Han Y (2010) Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation. J Am Chem Soc 132:10398–10406

    Article  CAS  Google Scholar 

  44. Sandoval A, Aguilar A, Louis C, Traverse A, Zanella R (2011) Bimetallic Au–Ag/TiO2 catalyst prepared by deposition–precipitation: high activity and stability in CO oxidation. J Catal 281:40–49

    Article  CAS  Google Scholar 

  45. Wang A, Liu J, Lin SD, Lin T, Mou C (2005) A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization. J Catal 233:186–197

    Article  CAS  Google Scholar 

  46. Engel T, Ertl G (1978) A molecular beam investigation of the catalytic oxidation of CO on Pd (111). J Chem Phys 69:1267–1281

    Article  CAS  Google Scholar 

  47. Ladas S, Poppa H, Boudart M (1981) The adsorption and catalytic oxidation of carbon monoxide on evaporated palladium particles. Surf Sci 102:151–171

    Article  CAS  Google Scholar 

  48. Liu K, Wang A, Zhang T (2012) Recent advances in preferential oxidation of CO reaction over platinum group metal catalysts. ACS Catal 2:1165–1178

    Article  CAS  Google Scholar 

  49. Hammer B, Nørskov JK (1995) Why gold is the noblest of all the metals. Nature 376:238–240

    Article  CAS  Google Scholar 

  50. Hammer B, Nørskov JK (1995) Electronic factors determining the reactivity of metal surfaces. Surf Sci 343:211–220

    Article  CAS  Google Scholar 

  51. Nikolla E, Schwank J, Linic S (2009) Measuring and relating the electronic structures of nonmodel supported catalytic materials to their performance. J Am Chem Soc 131:2747–2754

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Kusada .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kusada, K. (2014). Systematic Study of the Hydrogen Storage Properties and the CO-oxidizing Abilities of Solid Solution Alloy Nanoparticles in an Immiscible Pd–Ru System. In: Creation of New Metal Nanoparticles and Their Hydrogen-Storage and Catalytic Properties. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55087-7_3

Download citation

Publish with us

Policies and ethics