Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 465 Accesses

Abstract

As introduced in Chap. 1, the lunar atmosphere is too tenuous to stand off the solar wind plasma and magnetic field by inducing currents in its ionosphere. Therefore, the Moon is often called an “airless” body and thought of as a passive plasma absorber. This chapter presents the dual-probe ARTEMIS observations in the Earth’s magnetotail lobes to demonstrate that plasma of lunar origin can be dominant and have a significant impact on the ambient plasma. The two-point measurements reveal that the plasma density on the lunar dayside sometimes becomes several times higher than the ambient lobe plasma density. Meanwhile, the electron pitch-angle distributions show \({\sim }90^{\circ }\) electron dropouts coexisting with the plasma of lunar origin, suggesting that the velocity distributions of lobe electrons are modified in association with the lunar plasma. The accurate electron measurements by ARTEMIS with knowledge of the spacecraft potential also suggest the existence of a high-energy tail population of lunar surface photoelectrons. The high-energy photoelectron emission results in large positive potentials on the dayside lunar surface in the tail lobes, accelerating lunar ions upward from the Moon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, K.A., Lin, R.P.: Observation of interplanetary field lines in the magnetotail. J. Geophys. Res. 74(16), 3953–3968 (1969). doi:10.1029/JA074i016p03953, http://dx.doi.org/10.1029/JA074i016p03953

  2. Anderson, K.A., Lin, R.P., McGuire, R.E., McCoy, J.E.: Measurement of lunar and planetary magnetic fields by reflection of low energy electrons. Space Sci. Instrum. 1, 439–470 (1975)

    Google Scholar 

  3. Angelopoulos, V.: The ARTEMIS mission. Space Sci. Rev. 165(1–4), 3–25 (2011). doi:10.1007/s11214-010-9687-2

    Article  Google Scholar 

  4. Auster, H.U., Glassmeier, K.H., Magnes, W., Aydogar, O., Baumjohann, W., Constantinescu, D., Fischer, D., Fornacon, K.H., Georgescu, E., Harvey, P., Hillenmaier, O., Kroth, R., Ludlam, M., Narita, Y., Nakamura, R., Okrafka, K., Plaschke, F., Richter, I., Schwarzl, H., Stoll, B., Valavanoglou, A., Wiedemann, M.: The THEMIS fluxgate magnetometer. Space Sci. Rev. 141(1–4), 235–264 (2008). doi:10.1007/s11214-008-9365-9

    Article  Google Scholar 

  5. Bonnell, J.W., Mozer, F.S., Delory, G.T., Hull, A.J., Ergun, R.E., Cully, C.M., Angelopoulos, V., Harvey, P.R.: The electric field instrument (EFI) for THEMIS. Space Sci. Rev. 141(1–4), 303–341 (2008). doi:10.1007/s11214-008-9469-2

    Article  Google Scholar 

  6. Goertz, C.K.: Dusty plasmas in the solar system. Rev. Geophys. 27(2), 271–292 (1989). doi:10.1029/RG027i002p00271

    Article  Google Scholar 

  7. Halekas, J.S., Delory, G.T., Farrell, W.M., Angelopoulos, V., McFadden, J.P., Bonnell, J.W., Fillingim, M.O., Plaschke, F.: First remote measurements of lunar surface charging from ARTEMIS: evidence for nonmonotonic sheath potentials above the dayside surface. J. Geophys. Res. 116, A07103 (2011). doi:10.1029/2011JA016542

  8. Halekas, J.S., Lillis, R.J., Lin, R.P., Manga, M., Purucker, M.E., Carley, R.A.: How strong are lunar crustal magnetic fields at the surface?: considerations from a reexamination of the electron reflectometry technique. J. Geophys. Res. 115, E03006 (2010). doi:10.1029/2009JE003516

  9. Halekas, J.S., Mitchell, D.L., Lin, R.P., Frey, S., Hood, L.L., Acuña, M.H., Binder, A.B.: Mapping of crustal magnetic anomalies on the lunar near side by the Lunar prospector electron reflectometer. J. Geophys. Res. 106, 27841–27852 (2001). doi:10.1029/2000JE001380

  10. Kieffer, L.J., Dunn, G.H.: Electron impact ionization cross-section data for atoms, atomic ions, and diatomic molecules: I. experimental data. Rev. Mod. Phys. 38, 1–35 (1966). doi:10.1103/RevModPhys.38.1, http://link.aps.org/doi/10.1103/RevModPhys.38.1

  11. Lin, R.P.: Observations of Lunar shadowing of energetic particles. J. Geophys. Res. 73, 3066–3071 (1968). doi:10.1029/JA073i009p03066

    Article  Google Scholar 

  12. McCoy, J.E., Criswell, D.R.: Evidence for a high altitude distribution of lunar dust. In: Proceedings of Lunar sciience conference, 5th, pp. 2991–3005 (1974)

    Google Scholar 

  13. McCoy, J.E., Lin, R.P., McGuire, R.E., Chase, L.M., Anderson, K.A.: Magnetotail electric fields observed from Lunar orbit. J. Geophys. Res. 80, 3217–3224 (1975). doi:10.1029/JA080i022p03217

    Article  Google Scholar 

  14. McFadden, J.P., Carlson, C.W., Larson, D., Bonnell, J., Mozer, F., Angelopoulos, V., Glassmeier, K.H., Auster, U.: THEMIS ESA first science results and performance issues. Space Sci. Rev. 141(1–4), 477–508 (2008). doi:10.1007/s11214-008-9433-1

    Article  Google Scholar 

  15. McFadden, J.P., Carlson, C.W., Larson, D., Ludlam, M., Abiad, R., Elliott, B., Turin, P., Marckwordt, M., Angelopoulos, V.: The THEMIS ESA plasma instrument and in-flight calibration. Space Sci. Rev. 141(1–4), 277–302 (2008). doi:10.1007/s11214-008-9440-2

    Article  Google Scholar 

  16. Poppe, A., Halekas, J.S., Horányi, M.: Negative potentials above the day-side lunar surface in the terrestrial plasma sheet: evidence of non-monotonic potentials. Geophys. Res. Lett. 38, L02103 (2011). doi:10.1029/2010GL046119

  17. Poppe, A., Horányi, M.: Simulations of the photoelectron sheath and dust levitation on the lunar surface. J. Geophys. Res. 115, A08106 (2010). doi:10.1029/2010JA015286

  18. Poppe, A.R., Halekas, J.S., Delory, G.T., Farrell, W.M., Angelopoulos, V., McFadden, J.P., Bonnell, J.W., Ergun, R.E.: A comparison of ARTEMIS observations and particle-in-cell modeling of the lunar photoelectron sheath in the terrestrial magnetotail. Geophys. Res. Lett. 39, L01102 (2012). doi:10.1029/2011GL050321

  19. Poppe, A.R., Halekas, J.S., Samad, R., Sarantos, M., Delory, G.T.: Model-based constraints on the lunar exosphere derived from ARTEMIS pickup ion observations in the terrestrial magnetotail. J. Geophys. Res. 118(5), 1135–1147 (2013). doi:10.1002/jgre.20090, http://dx.doi.org/10.1002/jgre.20090

  20. Poppe, A.R., Samad, R., Halekas, J.S., Sarantos, M., Delory, G.T., Farrell, W.M., Angelopoulos, V., McFadden, J.P.: ARTEMIS observations of lunar pick-up ions in the terrestrial magnetotail lobes. Geophys. Res. Lett. 39, L17104 (2012). doi:10.1029/2012GL052909

  21. Reiff, P.H.: Magnetic shadowing of charged particles by an extended surface. J. Geophys. Res. 81(19), 3423–3427 (1976). doi:10.1029/JA081i019p03423

    Article  Google Scholar 

  22. Roux, A., Le Contel, O., Coillot, C., Bouabdellah, A., de la Porte, B., Alison, D., Ruocco, S., Vassal, M.C.: The search coil magnetometer for THEMIS. Space Sci. Rev. 141(1–4), 265–275 (2008). doi:10.1007/s11214-008-9455-8

    Article  Google Scholar 

  23. Sauer, K., Dubinin, E., Baumgartel, K., Tarasov, V.: Low-frequency electromagnetic waves and instabilities within the Martian bi-ion plasma. Earth Planets Space 50(3), 269–278 (1998)

    Article  Google Scholar 

  24. Stern, S.: The lunar atmosphere: History, status, current problems, and context. Rev. Geophys. 37(4), 453–491 (1999). doi:10.1029/1999RG900005

    Article  Google Scholar 

  25. Stubbs, T., Vondrak, R., Farrell, W.: A dynamic fountain model for lunar dust. Adv. Space Res. 37(1), 59–66 (2006). doi:10.1016/j.asr.2005.04.048

    Article  Google Scholar 

  26. Tanaka, T., Saito, Y., Yokota, S., Asamura, K., Nishino, M.N., Tsunakawa, H., Shibuya, H., Matsushima, M., Shimizu, H., Takahashi, F., Fujimoto, M., Mukai, T., Terasawa, T.: First in situ observation of the Moon-originating ions in the Earth’s Magnetosphere by MAP-PACE on SELENE (KAGUYA). Geophys. Res. Lett. 36, L22106 (2009). doi:10.1029/2009GL040682

  27. Tsurutani, B.T.: Comets: a laboratory for plasma waves and instabilities. Geophys. Monogr. Ser. 61, 189–209 (1991). doi:10.1029/GM061p0189

    Google Scholar 

  28. Whipple, E.C.: Potentials of Surfaces in Space. Rep. Prog. Phys. 44(11), 1197–1250 (1981). doi:10.1088/0034-4885/44/11/002, http://stacks.iop.org/0034-4885/44/i=11/a=002

  29. Zhou, X.Z., Angelopoulos, V., Poppe, A.R., Halekas, J.S.: Artemis observations of lunar pick-up ions: mass constraints on ion species. J. Geophys. Res. 118, 1766–1774 (2013). doi:10.1002/jgre.20125, http://dx.doi.org/10.1002/jgre.20125

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Harada .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Harada, Y. (2015). Lunar Dayside Plasma in the Earth’s Magnetotail Lobes. In: Interactions of Earth’s Magnetotail Plasma with the Surface, Plasma, and Magnetic Anomalies of the Moon. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55084-6_3

Download citation

Publish with us

Policies and ethics