A Phase Field Approach to Mathematical Modeling of Crack Propagation

Chapter
Part of the Mathematics for Industry book series (MFI, volume 5)

Abstract

We consider a phase field model for crack propagation in an elastic body. The model is derived as an irreversible gradient flow of the Francfort-Marigo energy with the Ambrosio-Tortorelli regularization and is consistent to the classical Griffith theory. Some numerical examples computed by adaptive mesh finite element method are presented.

Keywords

Adaptive mesh finite element method Crack propagation Fracture mechanics Irreversible system Phase field model 

Notes

Acknowledgments

This work was partially supported by JSPS KAKENHI Grant Number 00268666.

References

  1. 1.
    G. Akagi, M. Kimura, Well-posedness and long time behavior for an irreversible diffusion equation (in preparation)Google Scholar
  2. 2.
    L. Ambrosio, V.M. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. 6-B(7), 105–123 (1992)Google Scholar
  3. 3.
    T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45(5), 601–620 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    B. Bourdin, The variational formulation of brittle fracture: numerical implementation and extensions, in IUTAM Symposium on discretization methods for evolving discontinuities, ed. by T. Belytschko, A. Combescure, R. de Borst. (Springer, 2007), pp. 381–393Google Scholar
  5. 5.
    B. Bourdin, Numerical implementation of the variational formulation of brittle fracture. Interfaces Free Bound. 9, 411–430 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    B. Bourdin, G.A. Francfort, J.-J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48, 797–826 (2000)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    B. Bourdin, G.A. Francfort, J.-J. Marigo, The Variational Approach to Fracture. (Springer, 2008)Google Scholar
  8. 8.
    M. Buliga, Energy minimizing brittle crack propagation. J. Elast. 52, 201–238 (1998/99)Google Scholar
  9. 9.
    P.A. Cundall, A computer model for simulating progressive large scale movements in blocky rock systems, in Proceedings of the Symposium of the International Society for Rock Mechanics, Nancy, vol. 2, pp. 129–136 (1971)Google Scholar
  10. 10.
    G.A. Francfort, J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    A.A. Griffith, The phenomenon of rupture and flow in solids. Phil. Trans. Royal Soc. London A221, 163–198 (1921)CrossRefGoogle Scholar
  12. 12.
    F. Hecht, New development in freefem++. J. Numer. Math. 20, 251–265 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    M. Hori, K. Oguni, H. Sakaguchi, Proposal of FEM implemented with particle discretization for analysis of failure phenomena. J. Mech. Phys. Solids 53, 681–703 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    T. Ichimura, M. Hori, M.L.L. Wijerathne, Linear finite elements with orthogonal discontinuous basis functions for explicit earthquake ground motion modeling. Int. J. Numer. Methods Eng. 86, 286–300 (2011)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    A. Karma, H. Levine, D. Kessler, Phase-field model of mode-III dynamic fracture. Phys. Rev. Lett. 87, 045501 (2001)CrossRefGoogle Scholar
  16. 16.
    T. Kawai, New discrete models and their application to seismic response analysis. Nucl. Eng. Des. 48, 207–229 (1978)CrossRefGoogle Scholar
  17. 17.
    M. Kimura, H. Komura, M. Mimura, H. Miyoshi, T. Takaishi, D. Ueyama, Adaptive mesh finite element method for pattern dynamics in reaction-diffusion systems, in Proceedings of the Czech-Japanese Seminar in Applied Mathematics 2005, COE Lecture Note, vol. 3, Faculty of Mathematics, Kyushu University ISSN 1881–4042 (2006), pp. 56–68Google Scholar
  18. 18.
    M. Kimura, H. Komura, M. Mimura, H. Miyoshi, T. Takaishi, D. Ueyama, Quantitative study of adaptive mesh FEM with localization index of pattern. in Proceedings of the Czech-Japanese Seminar in Applied Mathematics 2006, COE Lecture Note, vol. 6, Faculty of Mathematics, Kyushu University ISSN 1881–4042 (2007), pp. 114–136Google Scholar
  19. 19.
    M. Kimura, T. Takaishi, Phase field models for crack propagation. Theor. Appl. Mech. Jpn. 59, 85–90 (2011)Google Scholar
  20. 20.
    R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth. Phys. D 63, 410–423 (1993)CrossRefMATHGoogle Scholar
  21. 21.
    N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)CrossRefMATHGoogle Scholar
  22. 22.
    A. Munjiza, The Combined Finite-Discrete Element Method. (Wiley, New York, 2004)Google Scholar
  23. 23.
    A. Schmidt, K.G. Siebert, Design of adaptive finite element software. the finite element toolbox ALBERTA, in Lecture Notes in Computational Science and Engineering, vol. 42, (Springer-Verlag, Berlin, 2005)Google Scholar
  24. 24.
    T. Takaishi, Numerical simulations of a phase field model for mode III crack growth. Trans. Jpn. Soc. Ind. Appl. Math. 19, 351–369 (2009) (in Japanese)Google Scholar
  25. 25.
    T. Takaishi, M. Kimura, Phase field model for mode III crack growth. Kybernetika 45, 605–614 (2009)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Institute of Science and EngineeringKanazawa UniversityKakuma, KanazawaJapan
  2. 2.Faculty of Information DesignHiroshima Kokusai Gakuin UniversityHiroshimaJapan

Personalised recommendations