Skip to main content

Instructing the Translating Ribosome to Sense l-Tryptophan During Synthesis of the TnaC Nascent Regulatory Peptide

  • Chapter
  • First Online:
Regulatory Nascent Polypeptides

Abstract

The proteins specified by the tnaCAB operon, an operon present in Escherichia coli and other bacterial species, participate in several important reactions within the bacterial cell. Transcription of this operon is generally controlled by two mechanisms: by catabolite repression, and by an attenuation mechanism involving the inhibition of ribosome function by sensing the l-tryptophan level in the cell. Interactions between the TnaC nascent regulatory peptide and features of the ribosome peptide exit tunnel lead to the creation of a l-tryptophan-binding site within the ribosome. Once bound, l-tryptophan blocks the hydrolysis of TnaC-peptidyl-tRNA induced by release factor 2. This action stalls the translating ribosome at the end of the tnaC mRNA open reading frame, inhibiting the subsequent action of the Rho termination factor; this allows transcription of the tnaA and tnaB structural genes to proceed. These genes encode the enzymes tryptophanase and a l-tryptophan transporter, respectively. Understanding how l-tryptophan interacts with the ribosome, thus preventing transcription of the tnaA-tnaB region, which is an objective of our studies, would improve our understanding of this mechanism of gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Ã… resolution. Science 289(5481):905–920

    Article  CAS  PubMed  Google Scholar 

  • Bhatt S, Anyanful A, Kalman D (2011) CsrA and TnaB coregulate tryptophanase activity to promote exotoxin-induced killing of Caenorhabditis elegans by enteropathogenic Escherichia coli. J Bacteriol 193(17):4516–4522. doi:10.1128/JB.05197-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chant EL, Summers DK (2007) Indole signalling contributes to the stable maintenance of Escherichia coli multicopy plasmids. Mol Microbiol 63(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Yanofsky C (2003) Tandem transcription and translation regulatory sensing of uncharged tryptophan tRNA. Science 301(5630):211–213. doi:10.1126/science.1084902

    Article  CAS  PubMed  Google Scholar 

  • Choi KM, Brimacombe R (1998) The path of the growing peptide chain through the 23S rRNA in the 50S ribosomal subunit; a comparative cross-linking study with three different peptide families. Nucleic Acids Res 26(4):887–895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz-Vera LR, Yanofsky C (2008) Conserved residues Asp16 and Pro24 of TnaC-tRNAPro participate in tryptophan induction of tna operon expression. J Bacteriol 190(14):4791–4797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz-Vera LR, Rajagopal S, Squires C, Yanofsky C (2005) Features of ribosome-peptidyl-tRNA interactions essential for tryptophan induction of tna operon expression. Mol Cell 19(3):333–343

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Vera LR, Gong M, Yanofsky C (2006) Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide. Proc Natl Acad Sci USA 103(10):3598–3603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz-Vera LR, New A, Squires C, Yanofsky C (2007) Ribosomal features essential for tna operon induction: tryptophan binding at the peptidyl transferase center. J Bacteriol 189(8):3140–3146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz-Vera LR, Yang R, Yanofsky C (2009) Tryptophan inhibits Proteus vulgaris TnaC leader peptide elongation, activating tna operon expression. J Bacteriol 191(22):7001–7006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dawes EA, Dawson J, Happold FC (1947a) Nature of the tryptophanase complex. Nature (Lond) 159(4045):644

    Article  CAS  Google Scholar 

  • Dawes EA, Dawson J, Happold FC (1947b) Preparation of cell-free tryptophanase. Nature (Lond) 159(4029):99

    Article  CAS  Google Scholar 

  • Deeley MC, Yanofsky C (1981) Nucleotide sequence of the structural gene for tryptophanase of Escherichia coli K-12. J Bacteriol 147(3):787–796

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deeley MC, Yanofsky C (1982) Transcription initiation at the tryptophanase promoter of Escherichia coli K-12. J Bacteriol 151(2):942–951

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeMoss RD, Moser K (1969) Tryptophanase in diverse bacterial species. J Bacteriol 98(1):167–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evans WC, Richard W, Handley C, Happold FC (1941) The tryptophanase-indole reaction: some observations on the production of tryptophanase by Esch. coli; in particular the effect of the presence of glucose and amino acids on the formation of tryptophanase. Biochem J 35(1-2):207–212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gish K, Yanofsky C (1995) Evidence suggesting cis action by the TnaC leader peptide in regulating transcription attenuation in the tryptophanase operon of Escherichia coli. J Bacteriol 177(24):7245–7254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gollnick P, Yanofsky C (1990) tRNA(Trp) translation of leader peptide codon 12 and other factors that regulate expression of the tryptophanase operon. J Bacteriol 172(6):3100–3107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gong F, Yanofsky C (2001) Reproducing tna operon regulation in vitro in an S-30 system. Tryptophan induction inhibits cleavage of TnaC peptidyl-tRNA. J Biol Chem 276(3):1974–1983

    Article  CAS  PubMed  Google Scholar 

  • Gong F, Yanofsky C (2002a) Analysis of tryptophanase operon expression in vitro: accumulation of TnaC-peptidyl-tRNA in a release factor 2-depleted S-30 extract prevents Rho factor action, simulating induction. J Biol Chem 277(19):17095–17100

    Article  CAS  PubMed  Google Scholar 

  • Gong F, Yanofsky C (2002b) Instruction of translating ribosome by nascent peptide. Science 297(5588):1864–1867

    Article  CAS  PubMed  Google Scholar 

  • Gong F, Ito K, Nakamura Y, Yanofsky C (2001) The mechanism of tryptophan induction of tryptophanase operon expression: tryptophan inhibits release factor-mediated cleavage of TnaC-peptidyl-tRNA(Pro). Proc Natl Acad Sci USA 98(16):8997–9001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gong M, Gong F, Yanofsky C (2006) Overexpression of tnaC of Escherichia coli inhibits growth by depleting tRNA2 Pro availability. J Bacteriol 188(5):1892–1898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirakawa H, Inazumi Y, Masaki T, Hirata T, Yamaguchi A (2005) Indole induces the expression of multidrug exporter genes in Escherichia coli. Mol Microbiol 55(4):1113–1126

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa H, Kodama T, Takumi-Kobayashi A, Honda T, Yamaguchi A (2009) Secreted indole serves as a signal for expression of type III secretion system translocators in enterohaemorrhagic Escherichia coli O157:H7. Microbiology 155(pt 2):541–550

    Article  CAS  PubMed  Google Scholar 

  • Kamath AV, Yanofsky C (1997) Roles of the tnaC-tnaA spacer region and Rho factor in regulating expression of the tryptophanase operon of Proteus vulgaris. J Bacteriol 179(5):1780–1786

    CAS  PubMed Central  PubMed  Google Scholar 

  • Konan KV, Yanofsky C (2000) Rho-dependent transcription termination in the tna operon of Escherichia coli: roles of the boxA sequence and the rut site. J Bacteriol 182(14):3981–3988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malkin LI, Rich A (1967) Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. J Mol Biol 26(2):329–346

    Article  CAS  PubMed  Google Scholar 

  • Martinez AK, Shirole NH, Murakami S, Benedik MJ, Sachs MS, Cruz-Vera LR (2012) Crucial elements that maintain the interactions between the regulatory TnaC peptide and the ribosome exit tunnel responsible for Trp inhibition of ribosome function. Nucleic Acids Res 40(5):2247–2257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez AK, Gordon E, Sengupta A, Shirole N, Klepacki D, Martinez-Garriga B, Brown LM, Benedik MJ, Yanofsky C, Mankin AS, Vazquez-Laslop N, Sachs MS, Cruz-Vera LR (2013) Interactions of the TnaC nascent peptide with rRNA in the exit tunnel enable the ribosome to respond to free tryptophan. Nucleic Acids Res. doi:10.1093/nar/gkt923

    Google Scholar 

  • Martinez-Gomez K, Flores N, Castaneda HM, Martinez-Batallar G, Hernandez-Chavez G, Ramirez OT, Gosset G, Encarnacion S, Bolivar F (2012) New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microb Cell Fact 11:46. doi:10.1186/1475-2859-11-46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martino PD, Fursy R, Bret L, Sundararaju B, Phillips RS (2003) Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol 49(7):443–449

    Article  PubMed  Google Scholar 

  • Newton WA, Snell EE (1964) Catalytic properties of tryptophanase, a multifunctional pyridoxal phosphate enzyme. Proc Natl Acad Sci USA 51:382–389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pestka S (1971) Inhibitors of ribosome functions. Annu Rev Microbiol 25:487–562. doi:10.1146/annurev.mi.25.100171.002415

    Article  CAS  PubMed  Google Scholar 

  • Ren D, Bedzyk LA, Ye RW, Thomas SM, Wood TK (2004) Stationary-phase quorum-sensing signals affect autoinducer-2 and gene expression in Escherichia coli. Appl Environ Microbiol 70(4):2038–2043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seidelt B, Innis CA, Wilson DN, Gartmann M, Armache JP, Villa E, Trabuco LG, Becker T, Mielke T, Schulten K, Steitz TA, Beckmann R (2009) Structural insight into nascent polypeptide chain-mediated translational stalling. Science 326(5958):1412–1415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart V, Yanofsky C (1985) Evidence for transcription antitermination control of tryptophanase operon expression in Escherichia coli K-12. J Bacteriol 164(2):731–740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart V, Yanofsky C (1986) Role of leader peptide synthesis in tryptophanase operon expression in Escherichia coli K-12. J Bacteriol 167(1):383–386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart V, Landick R, Yanofsky C (1986) Rho-dependent transcription termination in the tryptophanase operon leader region of Escherichia coli K-12. J Bacteriol 166(1):217–223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trabuco LG, Harrison CB, Schreiner E, Schulten K (2010) Recognition of the regulatory nascent chain TnaC by the ribosome. Structure 18(5):627–637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tso WW, Adler J (1974) Negative chemotaxis in Escherichia coli. J Bacteriol 118(2):560–576

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valbuzzi A, Yanofsky C (2001) Inhibition of the B. subtilis regulatory protein TRAP by the TRAP-inhibitory protein, AT. Science 293(5537):2057–2059. doi:10.1126/science.1062187

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Laslop N, Ramu H, Klepacki D, Kannan K, Mankin AS (2010) The key function of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide. EMBO J 29(18):3108–3117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang D, Ding X, Rather PN (2001) Indole can act as an extracellular signal in Escherichia coli. J Bacteriol 183(14):4210–4216. doi:10.1128/JB.183.14.4210-4216.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson DN, Beckmann R (2011) The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr Opin Struct Biol 21(2):274–282

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Cruz-Vera LR, Yanofsky C (2009) 23S rRNA nucleotides in the peptidyl transferase center are essential for tryptophanase operon induction. J Bacteriol 191(11):3445–3450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yanofsky C (2007) RNA-based regulation of genes of tryptophan synthesis and degradation, in bacteria. RNA 13(8):1141–1154. doi:10.1261/rna.620507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yonath A, Leonard KR, Wittmann HG (1987) A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. Science 236(4803):813–816

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Science Foundation Grant to L.R.C.V. (MCB-1158271). L.R.C.V wishes to dedicate this chapter to Charles Yanofsky, who has helped him to build his own career by teaching him that to be a scientist is not just a profession but also a way of life.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis R. Cruz-Vera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Cruz-Vera, L.R., Yanofsky, C. (2014). Instructing the Translating Ribosome to Sense l-Tryptophan During Synthesis of the TnaC Nascent Regulatory Peptide. In: Ito, K. (eds) Regulatory Nascent Polypeptides. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55052-5_9

Download citation

Publish with us

Policies and ethics