Skip to main content

Natural Killer Cells

  • Chapter
  • First Online:
Immunotherapy of Cancer
  • 2288 Accesses

Abstract

In recent years, roles of the immune system in immune surveillance of cancer have been explored. And natural killer (NK) cells are considered to be critical players in anticancer immunity. However, cancers are able to develop mechanisms to escape NK cell attack or to induce defective NK cells.

In this review, I mentioned the role of NK cell receptors, therapeutic NK cells, and NK cell modulation in order to enhance anticancer immunity. Namely, I discuss on some of the implications of the various findings with respect to possible therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L et al (2005) Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436(7051):709–713

    Article  CAS  PubMed  Google Scholar 

  2. Sun K, Alvarez M, Ames E, Barao I, Chen M, Longo DL et al (2012) Mouse NK cell-mediated rejection of bone marrow allografts exhibits patterns consistent with Ly49 subset licensing. Blood. doi:10.1182/blood-2011-08-374314

    Google Scholar 

  3. Tarek N, Le Luduec JB, Gallagher MM, Zheng J, Venstrom JM, Chamberlain E et al (2012) Unlicensed NK cells target neuroblastoma following anti-GD2 antibody treatment. J Clin Invest. doi:10.1172/JCI62749

    PubMed Central  PubMed  Google Scholar 

  4. Raulet DH, Vance RE (2006) Self-tolerance of natural killer cells. Nat Rev Immunol 6(7):520–531

    Article  CAS  PubMed  Google Scholar 

  5. Orr MT, Lanier LL (2010) Natural killer cell education and tolerance. Cell 142(6):847–856. doi:10.1016/j.cell.2010.08.031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Jung H, Hsiung B, Pestal K, Procyk E, Raulet DH (2012) RAE-1 ligands for the NKG2D receptor are regulated by E2F transcription factors, which control cell cycle entry. J Exp Med 209(13):2409–2422. doi:10.1084/jem.20120565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Hershkovitz O, Rosental B, Rosenberg LA, Navarro-Sanchez ME, Jivov S, Zilka A et al (2009) NKp44 receptor mediates interaction of the envelope glycoproteins from the West Nile and dengue viruses with NK cells. J Immunol 183(4):2610–2621. doi:10.4049/jimmunol.0802806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Garg A, Barnes PF, Porgador A, Roy S, Wu S, Nanda JS et al (2006) Vimentin expressed on mycobacterium tuberculosis-infected human monocytes is involved in binding to the NKp46 receptor. J Immunol 177(9):6192–6198

    Article  CAS  PubMed  Google Scholar 

  9. Lakshmikanth T, Burke S, Ali TH, Kimpfler S, Ursini F, Ruggeri L et al (2009) NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J Clin Invest 119(5):1251–1263. doi:10.1172/JCI36022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hallett WH, Murphy WJ (2006) Positive and negative regulation of natural killer cells: therapeutic implications. Semin Cancer Biol 16(5):367–382

    Article  CAS  PubMed  Google Scholar 

  11. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE et al (1985) Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 313(23):1485–1492

    Article  CAS  PubMed  Google Scholar 

  12. Krause SW, Gastpar R, Andreesen R, Gross C, Ullrich H, Thonigs G et al (2004) Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase i trial. Clin Cancer Res 10(11):3699–3707

    Article  CAS  PubMed  Google Scholar 

  13. Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA (2011) Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin Cancer Res 17(19):6287–6297. doi:10.1158/1078-0432.CCR-11-134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Stern M, Passweg JR, Meyer-Monard S, Esser R, Tonn T, Soerensen J et al (2013) Pre-emptive immunotherapy with purified natural killer cells after haploidentical SCT: a prospective phase II study in two centers. Bone Marrow Transplant 48(3):433–438. doi:10.1038/bmt.2012.162

    Article  CAS  PubMed  Google Scholar 

  15. Rizzieri DA, Storms R, Chen DF, Long G, Yang Y, Nikcevich DA et al (2010) Natural killer cell-enriched donor lymphocyte infusions from A 3–6/6 HLA matched family member following nonmyeloablative allogeneic stem cell transplantation. Biol Blood Marrow Transplant 16(8):1107–1114. doi:10.1016/j.bbmt.2010.02.018

    Google Scholar 

  16. Tam YK, Maki G, Miyagawa B, Hennemann B, Tonn T, Klingemann HG et al (1999) Characterization of genetically altered, interleukin 2-independent natural killer cell lines suitable for adoptive cellular immunotherapy. Hum Gene Ther 10(8):1359–1373

    Article  CAS  PubMed  Google Scholar 

  17. Iliopoulou EG, Kountourakis P, Karamouzis MV, Doufexis D, Ardavanis A, Baxevanis CN et al (2010) A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother 59(12):1781–1789. doi:10.1007/s00262-010-0904-3

    Article  PubMed  Google Scholar 

  18. Gong JH, Maki G, Klingemann HG et al (1994) Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 8(4):652–658

    CAS  PubMed  Google Scholar 

  19. Yan Y, Steinherz P, Klingemann HG, Dennig D, Childs BH, McGuirk J et al (1998) Antileukemia activity of a natural killer cell line against human leukemias. Clin Cancer Res 4(11):2859–2868

    CAS  PubMed  Google Scholar 

  20. Tam YK, Miyagawa B, Ho VC, Klingemann HG (1999) Immunotherapy of malignant melanoma in a SCID mouse model using the highly cytotoxic natural killer cell line NK-92. J Hematother 8(3):281–290

    Article  CAS  PubMed  Google Scholar 

  21. Maki G, Klingemann HG, Martinson JA, Tam YK et al (2001) Factors regulating the cytotoxic activity of the human natural killer cell line, NK-92. J Hematother Stem Cell Res 10(3):369–383

    Article  CAS  PubMed  Google Scholar 

  22. Klingemann HG, Wong E, Maki GA (1996) A cytotoxic NK-cell line (NK-92) for ex vivo purging of leukemia from blood. Biol Blood Marrow Transplant 2(2):68–75

    CAS  PubMed  Google Scholar 

  23. Semino C, Martini L, Queirolo P, Cangemi G, Costa R, Alloisio A et al (1999) Adoptive immunotherapy of advanced solid tumors: an eight year clinical experience. Anticancer Res 19(6C):5645–5649

    CAS  PubMed  Google Scholar 

  24. Arai S, Meagher R, Swearingen M, Myint H, Rich E, Martinson J et al (2008) Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy 10(6):625–632. doi:10.1080/14653240802301872

    Article  CAS  PubMed  Google Scholar 

  25. Klingemann HG (2005) Natural killer cell-based immunotherapeutic strategies. Cytotherapy 7(1):16–22

    Article  CAS  PubMed  Google Scholar 

  26. Sutlu T, Alici E (2009) Natural killer cell-based immunotherapy in cancer: current insights and future prospects. J Intern Med 266(2):154–181. doi:10.1111/j.1365-2796.2009.02121.x

    Article  CAS  PubMed  Google Scholar 

  27. Rosenstein M, Ettinghausen SE, Rosenberg SA et al (1986) Extravasation of intravascular fluid mediated by the systemic administration of recombinant interleukin 2. J Immunol 137(5):1735–1742

    CAS  PubMed  Google Scholar 

  28. Meropol NJ, Porter M, Blumenson LE, Lindemann MJ, Perez RP, Vaickus L et al (1996) Daily subcutaneous injection of low-dose interleukin 2 expands natural killer cells in vivo without significant toxicity. Clin Cancer Res 2(4):669–677

    CAS  PubMed  Google Scholar 

  29. Hallett WH, Ames E, Alvarez M, Barao I, Taylor PA, Blazar BR et al (2008) Combination therapy using IL-2 and anti-CD25 results in augmented natural killer cell-mediated antitumor responses. Biol Blood Marrow Transplant 14(10):1088–1099. doi:10.1016/j.bbmt.2008.08.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ames E, Hallett WH, Murphy WJ (2009) Sensitization of human breast cancer cells to natural killer cell-mediated cytotoxicity by proteasome inhibition. Clin Exp Immunol 155(3):504–513. doi:10.1111/j.1365-2249.2008.03818.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Tanaka J, Sugita J, Shiratori S, Shigematsu A, Imamura M (2012) Dasatinib enhances the expansion of CD56+CD3- NK cells from cord blood. Blood 119(25):6175–6176. doi:10.1182/blood-2012-03-416800

    Article  CAS  PubMed  Google Scholar 

  32. Borg C, Terme M, Taïeb J, Ménard C, Flament C, Robert C (2004) Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J Clin Invest 114(3):379–388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Skov S, Pedersen MT, Andresen L, Straten PT, Woetmann A, Odum N (2005) Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. Cancer Res 65(23):11136–11145

    Article  CAS  PubMed  Google Scholar 

  34. Khuu H, Bettera DM, Cook L (2010) Adoptive transfer of escalating doses of ex vivo expanded autologous natural killer (NK) dells in patients with advanced malignancies following bortezomib treatment to sensitize to NK-TRAIL cytotoxicity. Blood 116:4296

    Google Scholar 

  35. Bellucci R, Nguyen HN, Martin A, Heinrichs S, Schinzel AC, Hahn WC et al (2012) Tyrosine kinase pathways modulate tumor susceptibility to natural killer cells. J Clin Invest 122(7):2369–2383. doi:10.1172/JCI58457. Epub 2012 Jun 11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Hsu AK, Quach H, Tai T, Prince HM, Harrison SJ, Trapani JA et al (2011) The immunostimulatory effect of lenalidomide on NK-cell function is profoundly inhibited by concurrent dexamethasone therapy. Blood 117(5):1605–1613. doi:10.1182/blood-2010-04-278432. Epub 2010 Oct 26

    Article  CAS  PubMed  Google Scholar 

  37. Krusch M, Salih J, Schlicke M, Baessler T, Kampa KM, Mayer F et al (2009) The kinase inhibitors sunitinib and sorafenib differentially affect NK cell antitumor reactivity in vitro. J Immunol 183(12):8286–8294. doi:10.4049/jimmunol.0902404

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Kokura M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kokura, S. (2016). Natural Killer Cells. In: Yamaguchi, Y. (eds) Immunotherapy of Cancer. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55031-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55031-0_7

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55030-3

  • Online ISBN: 978-4-431-55031-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics