Skip to main content

WT1 Peptide Vaccine for the Treatment of Malignancies: Its Development, Recent Progress, and Future Perspectives

  • Chapter
  • First Online:
Immunotherapy of Cancer

Abstract

Wilms’ tumor gene (WT1) possesses oncogenic functions and is expressed in various hematological malignancies and solid cancers, and the gene product WT1 protein is highly immunogenic, which indicates that WT1 should be a promising target antigen for cancer immunotherapy. The identification of human WT1 cytotoxic T lymphocyte (CTL) epitopes and the demonstration using a mouse model that WT1 could serve in vivo as a target antigen for cancer immunotherapy were reported in 2000. Based on these findings, clinical trials for WT1 peptide vaccine were started. The early clinical trials demonstrated that the WT1 peptide vaccination could induce WT1-specific immunological response such as an increase in WT1-specific CTL frequency, resulting in occurrence of clinical response such as a decrease in leukemia/solid tumor load, which strongly suggested the therapeutic potential of the WT1 peptide vaccine for the treatment of malignancies. A review article published in 2009 in a prestigious journal gave WT1 the highest ranking as a target antigen for cancer immunotherapy. Now, cases which showed immunological and/or clinical responses with treatment by WT1 peptide vaccine are being accumulated. Some of the recent clinical trials showed noteworthy results, such as the demonstration that WT1 peptide vaccination may lead acute myeloid leukemia patients with minimal residual disease to a cure and that the vaccination may prevent relapse of patients with hematological malignancies who have received allogeneic hematopoietic stem cell transplantation but are at high risk of relapse. In addition, clinical usefulness of the WT1 peptide vaccine combined with chemotherapy drugs or molecular target-based drugs was also suggested. Continuing progress of WT1-targeting immunotherapy, a translational research based on basic research, should lead to innovative development of cancer immunotherapy. Furthermore, comprehensive analysis of the samples obtained from the patients treated with the WT1-targeting immunotherapy, a reverse-translational research, should contribute to the elucidation of cancer immunity mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337

    Article  PubMed  Google Scholar 

  2. Oka Y, Tsuboi A, Oji Y, Kawase I, Sugiyama H (2008) WT1 peptide vaccine for the treatment of cancer. Curr Opin Immunol 20:211–220

    Article  PubMed  CAS  Google Scholar 

  3. Oka Y, Sugiyama H (2010) WT1 peptide vaccine, one of the most promising cancer vaccine: its present status and the future prospects. Immunotherapy 2:591–594

    Article  PubMed  CAS  Google Scholar 

  4. Yamagami T, Sugiyama H, Inoue K, Ogawa H, Tatekawa T, Hirata M et al (1996) Growth inhibition of human leukemic cells by WT1 (Wilms tumor gene) antisense oligodeoxynucleotides: implications for the involvement of WT1 in leukemogenesis. Blood 87:2878–2884

    PubMed  CAS  Google Scholar 

  5. Sugiyama H (1998) Wilms tumor gene (WT1) as a new marker for the detection of minimal residual disease in leukemia. Leuk Lymphoma 30:55–61

    Article  PubMed  CAS  Google Scholar 

  6. Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H et al (1994) WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 84:3071–3079

    PubMed  CAS  Google Scholar 

  7. Oji Y, Miyoshi S, Maeda H, Hayashi S, Tamaki H, Nakatsuka S et al (2002) Overexpression of the Wilms’ tumor gene WT1 in de novo lung cancers. Int J Cancer 100:292–303

    Article  CAS  Google Scholar 

  8. Nakatsuka S-I, Oji Y, Horiuchi T, Kanda T, Kitagawa M, Takeuchi T et al (2006) Immunohistochemical detection of WT1 protein in a variety of cancer cells. Mod Pathol 19:804–814

    PubMed  CAS  Google Scholar 

  9. Saito Y, Kitamura H, Hijikata A, Tomizawa-Murasawa M, Tanaka S, Takagi S et al (2010) Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci Transl Med 2:17ra9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Wagner N, Michiels JF, Schedi A, Wagner KD (2008) The Wilms’ tumour suppressor WT1 is involved in endothelial cell proliferation and migration: expression in tumour vessels in vivo. Oncogene 27:3662–3672

    Article  PubMed  CAS  Google Scholar 

  11. Oka Y, Tsuboi A, Fujiki F, Shirakata T, Nishida S, Hosen N et al (2008) “Cancer antigen WT1 protein-derived peptide”-based treatment of cancer―toward the further development―. Curr Med Chem 15:3053–3061

    Article  Google Scholar 

  12. Oka Y, Elisseeva OA, Tsuboi A, Ogawa H, Tamaki H, Li H et al (2000) Human cytotoxic T-lymphocyte responses specific for peptides of the wild-type Wilms’ tumor gene (WT1) product. Immunogenetics 51:99–107

    Article  PubMed  CAS  Google Scholar 

  13. Gao L, Bellantuono I, Elsasser A, Marley SB, Gordon MY, Goldman JM et al (2000) Selective elimination of leukemic CD34+ progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 95:2198–2203

    PubMed  CAS  Google Scholar 

  14. Doubrovina ES, Doubrovin MM, Lee S, Shieh J-H, Heller G, Pamer E et al (2004) In vitro stimulation with WT1 peptide-loaded Epstein-Barr virus-positive B cells elicit high frequencies of WT1 peptide-specific T cells with in vitro and in vivo tumoricidal activity. Clin Cancer Res 10:7202–7219

    Article  Google Scholar 

  15. Ohminami H, Yasukawa M, Fujita S (2000) HLA class I-restricted lysis of leukemia cells by a CD8+ cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 95:286–293

    PubMed  CAS  Google Scholar 

  16. Tsuboi A, Oka Y, Udaka K, Murakami M, Masuda T, Nakano A et al (2002) Enhanced induction of human WT1-specific cytotoxic T lymphocytes with a 9-mer WT1 peptide modified at HLA-A*2402-binding residues. Cancer Immunol Immunother 51:614–620

    Article  PubMed  CAS  Google Scholar 

  17. Azuma T, Makita M, Ninomiya K, Fujita S, Harada M, Yasukawa M (2002) Identification of a novel WT1-derived peptide which induces human leucocyte antigen-A24-restricted anti-leukaemia cytotoxic T lymphocytes. Br J Haematol 116:601–603

    Article  PubMed  CAS  Google Scholar 

  18. Rezvani K, Brenchley JM, Price DA, Kilical Y, Gostick A, Sewell AK et al (2005) T-cell responses directed against multiple HLA-A*0201-restricted epitopes derived from Wilms’ tumor 1 protein in patients with leukemia and healthy donors: identification, quantification, and characterization. Clin Cancer Res 11:8799–8807

    Article  PubMed  CAS  Google Scholar 

  19. Smithgall A, Misher L, Spies G, Cheever MA, Gaiger A (2001) Identification of novel WT1 HLA-A*0201-restricted CTL epitope using whole gene in vitro priming. ASH meeting

    Google Scholar 

  20. Asemissen AM, Keilholz U, Tenzer S, Müller M, Walter S, Stevanovic S et al (2006) Identification of a highly immunogenic HLA-A*01-binding T cell epitope of WT1. Clin Cancer Res 12:7476–7482

    Article  PubMed  CAS  Google Scholar 

  21. Pinilla-Ibarz J, May RJ, Korontsvit T, Gomez M, Kappel B, Zakhaleva V et al (2006) Improved human T-cell responses against synthetic HLA-0201 analog peptides derived from the WT1 oncoprotein. Leukemia 20:2025–2030

    Article  PubMed  CAS  Google Scholar 

  22. Bellantuono I, Gao L, Parry S, Marley S, Dazzi F, Apperley J et al (2002) Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL. Blood 100:3835–3837

    Article  PubMed  CAS  Google Scholar 

  23. Li Z, Oka Y, Tsuboi A, Masuda T, Tatsumi N, Kawakami M et al (2005) WT1235, a ninemer peptide derived from Wilms’ tumor gene product, is a candidate peptide for the vaccination of HLA-A*0201-positive patients with hematopoietic malignancies. Int J Hematol 82:458–459

    Article  PubMed  CAS  Google Scholar 

  24. Li Z, Oka Y, Tsuboi A, Fujiki F, Harada Y, Nakajima H et al (2008) Identification of a WT1 protein-derived peptide, WT1187, as a HLA-A*0206-restricted, WT1-specific CTL epitope. Microbiol Immunol 52:551–558

    Article  PubMed  CAS  Google Scholar 

  25. Wolfl M, Kuball J, Ho WY, Nguyen H, Manley TJ, Bleakley M et al (2007) Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood 110:201–210

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Doubrovina E, Carpenter T, Pankov D, Selvakumar A, Hasan A, O’Reilly RJ (2012) Mapping of novel peptides of WT-1 and presenting HLA alleles that induce epitope-specific HLA-restricted T cells with cytotoxic activity against WT1+ leukemias. Blood 120:1633–1646

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Weber G, Caruana I, Rouce RH, Barrett AJ, Gerdemann U, Leen AM et al (2013) Generation of tumor antigen-specific T cell lines from pediatric patients with acute lymphoblastic leukemia―implications for immunotherapy. Clin Cancer Res 19:5079–5091

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Elisseeva OA, Oka Y, Tsuboi A, Kim EH, Soma T, Tamaki H et al (2002) Humoral immune responses against Wilms’ tumor gene WT1 product in patients with hematopoietic malignancies. Blood 99:3272–3279

    Article  PubMed  CAS  Google Scholar 

  29. Wu F, Oka Y, Tsuboi A, Elisseeva OA, Nakajima H, Fujiki F et al (2005) Th1-biased humoral immune responses against Wilms tumor gene WT1 product in the patients with hematopoietic malignancies. Leukemia 19:268–274

    Article  PubMed  CAS  Google Scholar 

  30. Oji Y, Kitamura Y, Kamino E, Kitano A, Sawabata N, Inoue M et al (2009) WT1 IgG antibody for early detection of non-small cell lung cancer and as its prognostic factor. Int J Cancer 125:381–387

    Article  PubMed  CAS  Google Scholar 

  31. Gaiger A, Carter L, Greinix H, Carter D, McNeill PD, Houghton RL et al (2001) WT1-specific serum antibodies in patients with leukemia. Clin Cancer Res 7:761s–765s

    PubMed  CAS  Google Scholar 

  32. Scheibenbogen C, Letsch A, Thiel E, Schmittel A, Mailaender V, Baerwolf S et al (2002) CD8-T cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 100:2132–2137

    Article  PubMed  CAS  Google Scholar 

  33. Rezvani K, Yong AS, Savani BL, Mielke S, Keyvanfar K, Gostic E (2007) Graft-versus-leukemia effects associated with detectable Wilms tumor-1 specific T lymphocytes after allogeneic stem-cell transplantation for acute lymphoblastic leukemia. Blood 110:1924–1937

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Morita Y, Heike Y, Kawakami M, Miura O, Nakatsuka S, Ebisawa M et al (2006) Monitoring of WT1-specific cytotoxic T lymphocytes after allogeneic hematopoietic stem cell transplantation. Int J Cancer 119:1360–1367

    Article  PubMed  CAS  Google Scholar 

  35. Oka Y, Udaka K, Tsuboi A, Elisseeva OA, Ogawa H, Aozasa K et al (2000) Cancer immunotherapy targeting Wilms’ tumor gene WT1 product. J Immunol 164:1873–1880

    Article  PubMed  CAS  Google Scholar 

  36. Nakajima H, Kawasaki K, Oka Y, Tsuboi A, Kawakami M, Ikegame K et al (2004) WT1 peptide vaccination combined with BCG-CWS is more efficient for tumor eradication than WT1 peptide vaccination alone. Cancer Immunol Immunother 53:617–624

    Article  PubMed  CAS  Google Scholar 

  37. Nakajima H, Oka Y, Tsuboi A, Tatsumi N, Yamamoto Y, Fujiki F et al (2012) Enhanced tumor immunity of WT1 peptide vaccination by interferon-β administration. Vaccine 30:722–729

    Article  PubMed  CAS  Google Scholar 

  38. Ramirez F, Ghani Y, Gao L, Stauss H (2007) Dendritic cell immunization induces nonprotective WT1-specific CTL responses in mouse. J Immunother 30:140–149

    Article  PubMed  CAS  Google Scholar 

  39. Makita M, Hiraki A, Azuma T, Tsuboi A, Oka Y, Sugiyama H et al (2002) Antilung cancer effect of WT1-specific cytotoxic T lymphocytes. Clin Cancer Res 8:2626–2631

    PubMed  CAS  Google Scholar 

  40. Oka Y, Tsuboi A, Murakami M, Hirai M, Tominaga N, Nakajima H et al (2003) Wilms tumor gene peptide-based immunotherapy for patients with overt leukemia from myelodysplastic syndrome (MDS) or MDS with myelofibrosis. Int J Hematol 78:56–61

    Article  PubMed  CAS  Google Scholar 

  41. Mailänder V, Scheibenbogen C, Thiel E, Letsch A, Blau IW, Keilholz U (2004) Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematological or renal toxicity. Leukemia 18:165–166

    Article  PubMed  Google Scholar 

  42. Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo T, Nakajima H et al (2004) Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci U S A 101:13885–13890

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Rezvani K, Yong ASM, Mielke S, Savini BN, Musse L, Superata J et al (2008) Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 11:236–242

    Article  CAS  Google Scholar 

  44. Keilholz U, Letsch A, Busse A, Asemissen AM, Bauer S, Brau IW et al (2009) A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood 113:6541–6548

    Article  PubMed  CAS  Google Scholar 

  45. Yasukawa M, Fujiwara H, Ochi T, Suemori K, Narumi H, Azuma T et al (2009) Clinical efficacy of WT1 peptide vaccination in patients with acute myelogenous leukemia and myelodysplastic syndrome. Am J Hematol 84:314–315

    Article  PubMed  Google Scholar 

  46. Kawakami M, Oka Y, Tsuboi A, Harada Y, Elisseeva OA, Furukawa Y et al (2007) Clinical and immunological responses to very low dose vaccination with WT1 peptide (5μg/body) in a patient with chronic myelomonocytic leukemia. Int J Hematol 85:426–429

    Article  PubMed  CAS  Google Scholar 

  47. Tsuboi A, Oka Y, Nakajima H, Fukuda Y, Elisseeva OA, Yoshihara S et al (2007) Wilms’ tumor gene WT1 peptide-based immunotherapy induced minimal response in a patient with advanced, therapy-resistant multiple myeloma. Int J Hematol 86:414–417

    Article  PubMed  Google Scholar 

  48. Tsuboi A, Oka Y, Osaki T, Kumagai T, Tachibana I, Hayashi S et al (2004) WT1 peptide-based immunotherapy with lung cancer: report of two cases. Microbiol Immunol 48:175–184

    Article  PubMed  CAS  Google Scholar 

  49. Iiyama T, Udaka K, Takeda S, Takeuchi T, Adachi YC, Ohtsuki Y et al (2007) WT1 (Wilms’ tumor 1) peptide immunotherapy for renal cell carcinoma. Microbiol Immunol 51:519–530

    Article  PubMed  CAS  Google Scholar 

  50. Ohno S, Kyo S, Myojo S, Dohi S, Ishizaki J, Miyamoto K et al (2009) Wilms’ tumor 1 (WT1) peptide immunotherapy for gynecological malignancy. Anticancer Res 29:4779–4784

    PubMed  CAS  Google Scholar 

  51. Miyatake T, Ueda Y, Morimoto A, Enomoto T, Nishida S, Shirakata T et al (2013) WT1 peptide immunotherapy for gynecologic malignancies resistant to conventional therapies: a phase II trial. J Cancer Res Clin Oncol 139:457–463

    Article  PubMed  CAS  Google Scholar 

  52. Sasabe E, Hamada F, Iiyama T, Udaka K, Sugiyama H, Yamamoto T (2011) Wilm’s tumor gene WT1 peptide immunotherapy for pulmonary metastasis from adenoid cystic carcinoma of the salivary gland. Oral Oncol 47:77–78

    Article  PubMed  Google Scholar 

  53. Shirakata T, Oka Y, Nishida S, Hosen N, Tsuboi A, Oji Y et al (2012) WT1 peptide therapy for a patient with chemotherapy-resistant salivary gland cancer. Anticancer Res 32:1081–1086

    PubMed  CAS  Google Scholar 

  54. Nishioka M, Tanemura A, Nishida S, Nakano A, Tsuboi A, Oji Y et al (2012) Vaccination with the WT-1 (Wilms’ tumor gene-1) peptide and the BCG-CWS in melanoma: a case report. Eur J Dermatol 22:258–259

    PubMed  Google Scholar 

  55. Izumoto S, Tsuboi A, Oka Y, Suzuki T, Hashiba T, Kagawa N et al (2008) Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma. J Neurosurg 108:963–971

    Article  PubMed  CAS  Google Scholar 

  56. Ohta H, Hashii Y, Yoneda A, Takizawa S, Kusuki S, Tokimasa S et al (2009) WT1 (Wilms’ tumor 1) peptide immunotherapy for childhood rhabdomyosarcoma: a case report. Pediatr Hematol Oncol 26:74–83

    Article  PubMed  CAS  Google Scholar 

  57. Morita S, Oka Y, Tsuboi A, Kawakami M, Maruno M, Izumoto S et al (2006) A phase I/II trial of a WT1 (Wilms’ tumor gene) peptide vaccine in patients with solid malignancy; safety assessment based on the phase I data. Jpn J Clin Oncol 36:231–236

    Article  PubMed  Google Scholar 

  58. Maslak PG, Dao T, Krug LM, Chanel S, Korontsvit T, Zakhaleva V et al (2010) Vaccination with synthetic analog peptide derived from WT1 oncoprotein induces T-cell responses in patients with complete remission from acute myeloid leukemia. Blood 116:171–179

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Hashii Y, Sato E, Ohta H, Oka Y, Sugiyama H, Ozono K (2010) WT1 peptide vaccination for cancer in children and young adults. Pediatr Blood Cancer 55:352–355

    Article  PubMed  Google Scholar 

  60. Krug LM, Dao T, Brown AB, Maslak P, Travis W, Bekele S et al (2010) WT1 peptide vaccinations induce CD4 and CD8 T cell immune responses in patients with mesothelioma and non-small cell lung cancer. Cancer Immunol Immunother 59:1467–1479

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Dohi S, Ohno S, Ohno Y, Takakura M, Kyo S, Soma G-I et al (2011) WT1 peptide vaccine stabilized intractable ovarian cancer patient for one year: a case report. Anticancer Res 31:2441–2446

    PubMed  Google Scholar 

  62. Hashii Y, Sato-Miyashita E, Matsumura R, Kusui S, Yoshida H, Ohta H et al (2012) WT1 peptide vaccination following allogeneic stem cell transplantation in pediatric leukemic patients with high risk for relapse: successful maintenance of durable remission. Leukemia 26:530–532

    Article  PubMed  CAS  Google Scholar 

  63. Tsuboi A, Oka Y, Kyo T, Katayama Y, Elisseeva OA, Kawakami M et al (2012) Long-term WT1 peptide vaccination for patients with minimal residual disease. Leukemia 26:1410–1413

    Article  PubMed  CAS  Google Scholar 

  64. Ohno S, Okuyama R, Aruga A, Sugiyama H, Yamamoto M (2012) Phase I trial of Wilms’ tumor 1 (WT1) peptide vaccine with GM-CSF or CpG in patients with solid malignancies. Anticancer Res 32:2263–2269

    PubMed  CAS  Google Scholar 

  65. Maeda T, Hosen N, Fukushima K, Tsuboi A, Morimoto S, Matsui T et al (2013) Maintenance of complete remission after allogeneic stem cell transplantation in leukemia patients treated with Wilms tumor 1 (WT1) peptide vaccine. Blood Cancer J 3:e130

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Rezvani K (2011) Posttransplantation vaccination: concepts today and on the horizon. Hematol Am Soc Hematol Educ Program 2011:299–304

    Article  Google Scholar 

  67. Suzuki K, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11:6713–6721

    Article  PubMed  CAS  Google Scholar 

  68. Knights AJ, Zaniou A, Rees RC, Pawelec G, Müller L (2002) Prediction of an HLA-DR-binding peptide derived from Wilms’ tumour 1 protein and demonstration of in vitro immunogenicity of WT1 (124–138)-pulsed dendritic cells generated according to an optimized protocol. Cancer Immunol Immunother 51:271–281

    Article  PubMed  CAS  Google Scholar 

  69. Müller L, Knights A, Pawelec G (2003) Synthetic peptides derived from the Wilms’ tumor 1 protein sensitize human T lymphocytes to recognize chronic myelogenous leukemia. Hematol J 4:57–66

    Article  PubMed  CAS  Google Scholar 

  70. Guo Y, Niiya H, Azuma T, Uchida N, Yakushijin I, Sakai Y et al (2005) Direct recognition and lysis of leukemia cells by WT1-specific CD4+ T lymphocytes in an HLA class II-restricted manner. Blood 106:1415–1418

    Article  PubMed  CAS  Google Scholar 

  71. Kobayashi H, Nagato T, Aoki N, Sato K, Kimura S, Tateno M et al (2006) Defining MHC class II T helper epitopes for WT1 tumor antigen. Cancer Immunol Immunother 55:85–60

    Article  CAS  Google Scholar 

  72. Fujiki F, Oka Y, Tsuboi A, Kawakami M, Kawakatsu M, Nakajima H et al (2007) Identification and characterization of a WT1(Wilms’ tumor gene) protein-derived HLA-DRB1*0405-restricted 16-mer helper peptide that promotes the induction and activation of WT1-specific cytotoxic T lymphocytes. J Immunother 30:282–293

    Article  PubMed  CAS  Google Scholar 

  73. May RJ, Dao T, Pinilla-Ibarz J, Korontsvit T, Zakhaleva V, Zhang RH et al (2007) Peptide epitopes from the Wilms’ tumor 1 oncoprotein stimulate CD4+ and CD8+ T cells that recognize and kill human malignant mesothelioma tumor cells. Clin Cancer Res 13:4547–4555

    Article  PubMed  CAS  Google Scholar 

  74. Lehe C, Ghebeh H, Al-Sulaiman A, Qudaihi GA, Al-Hussein K, Almohareb F et al (2008) The Wilms’ tumor antigen is a novel target for human CD4+ regulatory T cells: implications for immunotherapy. Cancer Res 68:6350–6359

    Article  PubMed  CAS  Google Scholar 

  75. Fujiki F, Oka Y, Kawakatsu M, Tsuboi A, Nakajima H, Elisseeva OA et al (2008) A WT1 protein-derived, naturally processed 16-mer peptide, WT1332, is a promiscuous helper peptide for induction of WT1-specific Th1-type CD4+ T cells. Microbiol Immunol 52:591–600

    Article  PubMed  CAS  Google Scholar 

  76. Anguille S, Fujiki F, Smits EL, Oji Y, Lion E, Oka Y et al (2013) Identification of a Wilms’ tumor 1-derived immunogenic CD4+ T-cell epitope that is recognized in the context of common Caucasian HLA-DR haplotypes. Leukemia 27:748–750

    Article  PubMed  CAS  Google Scholar 

  77. Janssen E, Lemmens E (2003) CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421:852–856

    Article  PubMed  CAS  Google Scholar 

  78. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Topalian SN, Hodi FS, Bramer JR, Gettinger SN, Smith DC, McDermott DF et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Bramer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  CAS  Google Scholar 

  81. Kaneshima H, Tsuruma T, Kutomi G, Shima H, Imamura M, Torigoe T et al (2013) Immunotherapeutic benefit of α-interferon (IFNα) in survivin2B-derived peptide vaccination for advanced pancreatic cancer patients. Cancer Sci 104:124–129

    Article  CAS  Google Scholar 

  82. Yano A, Komatsu T, Ishibashi M, Udaka K (2007) Potent CTL induction by a whole cell pertussis vaccine in anti-tumor peptide immunotherapy. Microbiol Immunol 51:685–699

    Article  PubMed  CAS  Google Scholar 

  83. Van Tendeloo VF, Van de Velde A, Van Driessche A, Cools N, Anguille S, Price DA et al (2010) Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci U S A 107:13824–13829

    Article  PubMed Central  PubMed  Google Scholar 

  84. Oka Y (2013) A vaccine for leukemia: one step closer? Cure-oriented WT1 peptide vaccination therapy is being developed. Clin Investig 3:1–4

    Article  CAS  Google Scholar 

  85. Kaida M, Morita-Hoshi Y, Soeda A, Wakeda T, Yamaki Y, Kojima Y et al (2011) Phase I trial of Wilms tumor 1 (WT1) peptide vaccine and gemcitabine combination therapy in patients with advanced pancreatic or biliary tract cancer. J Immunother 34:92–99

    Article  PubMed  CAS  Google Scholar 

  86. Nishida S, Koido S, Takeda Y, Homma S, Komita H, Takahara A et al (2014) Wilms’ tumor gene 1 (WT1)-peptide-based cancer vaccine combined with gemcitabine for patients with advanced pancreatic cancer. J Immunother 37:105–114

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Disis ML (2011) Immunologic biomarkers as correlates of clinical response to cancer immunotherapy. Cancer Immunol Immunother 60:433–442

    Article  PubMed  CAS  Google Scholar 

  88. Narita M, Masuko M, Kurasaki T, Kitajima T, Takenouchi S, Saitoh A et al (2010) WT1 peptide vaccination in combination with imatinib therapy for a patient with CML in the chronic phase. Int J Med Sci 7:72–81

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Oji Y, Oka Y, Nishida S, Tsuboi A, Kawakami M, Shirakata T et al (2010) WT1 vaccine induces reduction in minimal residual disease in an imatinib-treated CML patient. Eur J Hematol 85:358–360

    Article  Google Scholar 

  90. Kitawaki T, Kadowaki N, Fukunaga K, Kasai Y, Maekawa T, Ohmori K et al (2011) A phase I/IIa clinical trial of immunotherapy for elderly patients with acute myeloid leukaemia using dendritic cells co-pulsed with WT1 peptide and zoledronate. Br J Haematol 153:786–799

    Article  CAS  Google Scholar 

  91. Takahashi H, Okamoto M, Shimodaira S, Tsujitani S, Nagaya M, Ishidao T et al (2013) Impact of dendritic cell vaccines pulsed with Wilms’ tumor-1 peptide antigen on the survival of patients with advanced non-small cell lung cancers. Eur J Cancer 49:852–859

    Article  PubMed  CAS  Google Scholar 

  92. Koido S, Homma S, Okamoto M, Takakura K, Mori M, Yoshizaki S et al (2014) Treatment with chemotherapy and dendritic cells pulsed with multiple Wilms’ tumor 1 (WT1)-specific MHC class I/II-restricted epitopes for pancreatic cancer. Clin Cancer Res 20:4228–4239

    Article  PubMed  CAS  Google Scholar 

  93. Wagner K-D, Cherfils-Vicini J, Hosen N, Hohenstein P, Gilson E, Hastie ND et al (2014) The Wilms’ tumour suppressor Wt1 is a major regulator of tumour angiogenesis and progression. Nat Commun. doi:10.1038/ncomms6852

    Google Scholar 

  94. Rezvani K, Yong AS, Mielke S, Jafarpour B, Savani BN, Le RQ et al (2011) Repeated PR1 and WT1 peptide vaccination in Montanide-adjuvant fails to induce sustained high-avidity, epitope-specific CD8+ T cells in myeloid malignancies. Hematologica 96:432–440

    Article  CAS  Google Scholar 

  95. Ochsenreither S, Fusi A, Besse A, Bauer S, Scheibenbogen C, Stather D et al (2011) “Wilms tumor protein 1” (WT1) peptide vaccination-induced complete remission in a patient with acute myeloid leukemia is accompanied by the emergence of a predominant T-cell clone both in blood and bone marrow. J Immunother 34:85–91

    Article  PubMed  CAS  Google Scholar 

  96. Morimoto S, Oka Y, Tsuboi A, Tanaka Y, Fujiki F, Nakajima H et al (2012) Biased usage of T cell receptor β-chain variable region genes of WT1 (Wilms’ tumor gene)-specific CD8+ T cells in patients with solid tumors and healthy donors. Cancer Sci 103:408–414

    Article  PubMed  CAS  Google Scholar 

  97. Nakae Y, Oka Y, Fujiki F, Morimoto S, Kamiya T, Takashima S, et al (2015) Two distinct effector memory cell populations of WT1 (Wilms’ tumor gene 1)-specific cytotoxic T lymphocytes in acute myeloid leukemia patients. Cancer Immunol Immunother 64:791–804

    Google Scholar 

Download references

Acknowledgement and Conflict of Interest

We, the authors of this chapter, greatly appreciate the contribution by all the collaborators. We express our special thanks to Ms. Tomoe Umeda for her sincere contribution to the practice of clinical studies performed in Osaka University Hospital. We apologize to the authors whose works were not cited in this chapter due to unavoidable reasons, including lack of space.

The preparation of this review chapter was in part supported by Japan Society for the Promotion of Science (JSPS) through grants for Scientific Research from Ministry of Education, Science, Sports, Culture, and Technology. Department of Cancer Immunology is a department in collaboration with Otsuka Pharmaceutical Co., Ltd., and is supported with a grant from the company. The company had no role in the design of the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshihiro Oka or Haruo Sugiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Oka, Y. et al. (2016). WT1 Peptide Vaccine for the Treatment of Malignancies: Its Development, Recent Progress, and Future Perspectives. In: Yamaguchi, Y. (eds) Immunotherapy of Cancer. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55031-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55031-0_12

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55030-3

  • Online ISBN: 978-4-431-55031-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics