Skip to main content

Dynamic Robust Bifurcation Analysis

  • Chapter
  • First Online:
Analysis and Control of Complex Dynamical Systems

Part of the book series: Mathematics for Industry ((MFI,volume 7))

Abstract

We propose a new concept of dynamic robust bifurcation analysis for uncertain dynamical systems. An uncertain system is described by a feedback form composed of a nonlinear dynamical system and a dynamic uncertainty that is defined by a set of differential equations. For such an uncertain system, a bifurcation point can be uncertain as well. Therefore, we formulate a dynamic robust bifurcation analysis problem of identifying the set of all potential bifurcation points. To this end, first, we study equilibrium analysis to evaluate the existence and location of equilibria. Next, we derive a condition for robust hyperbolicity of the evaluated set of potential equilibrium points. On the basis of the condition, we propose a method for identifying the set of potential bifurcation points. Finally, illustrative examples for robustness analysis of normal forms for various bifurcations are presented.

This research was done when M.I. was with FIRST, Aihara Innovative Mathematical Modelling Project, Japan Science and Technology Agency/Graduate School of Information Science and Engineering, Tokyo Institute of Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press, Boca Raton (1998)

    Google Scholar 

  2. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)

    Google Scholar 

  3. Kuznetsov, Y.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2004)

    Google Scholar 

  4. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)

    Article  Google Scholar 

  5. Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000)

    Article  Google Scholar 

  6. Tyson, J.J., Chen, K., Novak, B.: Network dynamics and cell physiology. Nat. Rev. Mol. Cell Biol. 2(12), 908–916 (2001)

    Article  Google Scholar 

  7. Tyson, J.J., Chen, K., Novak, B.: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15(2), 221–231 (2003)

    Article  Google Scholar 

  8. Swat, M., Kel, A., Herzel, H.: Bifurcation analysis of the regulatory modules of the mammalian G1/S transition. Bioinformatics 20(10), 1506–1511 (2004)

    Article  Google Scholar 

  9. Angeli, D., Ferrell Jr, J.E., Sontag, E.D.: Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. USA 101(7), 1822–1827 (2004)

    Article  Google Scholar 

  10. Fung, E., Wong, W.W., Suen, J.K., Bulter, T., Lee, S., Liao, J.C.: A synthetic gene-metabolic oscillator. Nature 435, 118–122 (2005)

    Article  Google Scholar 

  11. Wong, W.W., Tsai, T.Y., Liao, J.C.: Single-cell zeroth-order protein degradation enhances the robustness of synthetic oscillator. Mol. Syst. Biol. 3, 130 (2007)

    Google Scholar 

  12. Chen, L., Wang, R., Li, C., Aihara, K.: Modeling Biomolecular Networks in Cells: Structures and Dynamics. Springer, New York (2010)

    Google Scholar 

  13. Cosentino, C., Bates, D.: Feedback Control in Systems Biology. Chapman & Hall, CRC, Boca Raton (2011)

    Google Scholar 

  14. Padirac, A., Fujii, T., Rondelez, Y.: Bottom-up construction of in vitro switchable memories. Proc. Natl. Acad. Sci. USA 109(47), 19047–19048 (2012)

    Article  Google Scholar 

  15. Dobson, I.: Observations on the geometry of saddle node bifurcation and voltage collapse in electrical power systems. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 39(3), 240–243 (1992)

    Article  Google Scholar 

  16. Dobson, I., Liming, L.: Computing an optimum direction in control space to avoid saddle node bifurcation and voltage collapse in electric power systems. IEEE Trans. Autom. Control 37(10), 1616–1620 (1992)

    Article  Google Scholar 

  17. Ajjarapu, V., Lee, B.: Bifurcation theory and its application to nonlinear dynamical phenomena in an electrical power system. IEEE Trans. Power Syst. 7(1), 424–431 (1992)

    Article  Google Scholar 

  18. Varghese, M., Wu, F., Varaiya, P.: Bifurcations associated with sub-synchronous resonance. IEEE Trans. Power Syst. 13(1), 139–144 (1998)

    Article  Google Scholar 

  19. van den Driessche, P., Watmough, J.: A simple SIS epidemic model with a backward bifurcation. J. Math. Biol. 40(6), 525–540 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dodds, P.S., Watts, D.J.: Universal behavior in a generalized model of contagion. Phys. Rev. Lett. 92(21), 218701 (2004)

    Article  Google Scholar 

  21. Gross, T.: DfLima, C.J.D., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96(20), 208701 (2006)

    Google Scholar 

  22. Wang, W.: Backward bifurcation of an epidemic model with treatment. Math. BioSci. 201(1–2), 58–71 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  24. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design, 2nd edn. Wiley-Interscience, New York (2005)

    Google Scholar 

  25. Ikeda, K., Murota, Z.: Imperfect Bifurcation in Structures and Materials: Engineering Use of Group-Theoretic Bifurcation Theory, 2nd edn. Springer, New York (2010)

    Google Scholar 

  26. Inoue, M., Imura, J., Kashima, K., Aihara, K.: Robust bifurcation analysis based on the Nyquist stability criterion. In: Proceedings of 52nd IEEE Conference on Decision and Control, pp. 1768–1773 (2013)

    Google Scholar 

  27. Nyquist, H.: Regeneration theory. Bell Syst. Tech. J. 11(1), 126–147 (1932)

    Article  MATH  Google Scholar 

  28. Zames, G.: On the input-output stability of nonlinear time-varying feedback systems, Parts I and II. IEEE Trans. Autom. Control 11, 228–238 and 465–476 (1966)

    Google Scholar 

  29. Bruinsma, N.A., Steinbuch, M.: A fast algorithm to compute the \(H_\infty \)-norm of a transfer function matrix. Syst. Control Lett. 14(4), 287–293 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  30. Willems, J.C.: Least squares stationary optimal control and the algebraic Riccati equation. IEEE Trans. Autom. Control 16(6), 621–634 (1971)

    Article  MathSciNet  Google Scholar 

  31. Stoorvogel, A.A.: Stabilizing solutions of the \(H_\infty \) algebraic Riccati equation. Linear Algebra Appl. 240, 153–172 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  32. Takeda, S., Bergen, A.R.: Instability of feedback systems by orthogonal decomposition of \(L_2\). IEEE Trans. Autom. Control 18(6), 631–636 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  33. Desoer, C.A., Vidyasagar, M.: Feedback Systems: Input-Output Properties, SIAM (1975)

    Google Scholar 

  34. Doyle, J.: Analysis of feedback systems with structured uncertainties. IEE Proc. D (Control Theory Appl.) 129(6), 242–250 (1982)

    Article  MathSciNet  Google Scholar 

  35. Inoue, M., Imura, J., Kashima, K., Arai, T., Aihara, K.: An instability condition for uncertain systems toward robust bifurcation analysis. In: Proceedings of European Control Conference 2013, pp. 3264–3269 (2013)

    Google Scholar 

  36. Inoue, M., Imura, J., Kashima, K., Aihara, K.: Robust bifurcation analysis of systems with dynamic uncertainties. Int. J. Bifurcat. Chaos 23(9), 1350157 (2013)

    Article  MathSciNet  Google Scholar 

  37. Inoue, M., Arai, T., Imura, J., Kashima, K., Aihara, K.: Robust stability and instability of nonlinear feedback system with uncertainty-dependent equilibrium. In: Proceedings of European Control Conference 2014, pp. 1486–1491 (2014)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Takayuki Arai, Masayasu Suzuki, and Takayuki Ishizaki for their comments and fruitful discussion on this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Inoue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Inoue, M., Imura, Ji., Kashima, K., Aihara, K. (2015). Dynamic Robust Bifurcation Analysis. In: Aihara, K., Imura, Ji., Ueta, T. (eds) Analysis and Control of Complex Dynamical Systems. Mathematics for Industry, vol 7. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55013-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55013-6_1

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55012-9

  • Online ISBN: 978-4-431-55013-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics