Advertisement

Mathematical Models of Visual Information Processing in the Human Brain and Applications to Visual Illusions and Image Processing

Chapter
Part of the Mathematics for Industry book series (MFI, volume 4)

Abstract

This chapter is a survey of a series of joint works of Shinobu Arai and me. The main purpose of our study is to construct mathematical models of visual information processing in the brain, and to give applications to study of visual illusions and image processing. In this chapter I will describe a part of our simulations of some visual illusions, creations of the so-called “fuyuu illusions”, and an application to image processing.

Keywords

Framelet Pinwheel framelet Image processing Visual illusion 

Notes

Acknowledgments

The author thanks to Professor Anjyo for inviting me to Symposium MEIS2013.

References

  1. 1.
    Arai H (2010) Wavelets. Kyoritsu Publ, Tokyo (in Japanese)Google Scholar
  2. 2.
    Arai H (2005) A nonlinear model of visual information processing based on discrete maximal overlap wavelets. Interdiscip Inf Sci 11:177–219MathSciNetGoogle Scholar
  3. 3.
    Arai H (2007) Achromatic and chromatic visual information processing and discrete wavelets. In: Frontiers of Computational Sciences (pp 83–89, invited paper): SpringerGoogle Scholar
  4. 4.
    Arai H (2013) Visual illusions and sciences. Minerva Shobo, Japan (in Japanese)Google Scholar
  5. 5.
    Arai H, Arai S (2009) 2D tight framelets with orientation selectivity suggested by vision science. JSIAM Lett 1:9–12 (Invited Paper)Google Scholar
  6. 6.
    Arai H, Arai S (2010) Framelet analysis of some geometrical illusions. Jpn J Ind Appl Math 27:23–46CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Arai H, Arai S A patent specification (JP Patent No. 5038547; Intern. Pub. No. WO2012067254), a paper is in preparationGoogle Scholar
  8. 8.
    Baumgartner G (1960) Indirekte Größenbestimmung der rezeptiven Felder der Retina beim Menschen mittels der Hermannschen Gittertäuschung. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere 272:21–22Google Scholar
  9. 9.
    Daubechies I, Han B, Ron A, Shen Z (2003) Framelets: MRA-based constructions of wavelet frames. Appl Comput Harm Anal 14:1–46Google Scholar
  10. 10.
    Escalante-Ramírez E, Silván-Cárdenas J (2005) A multiresolution directional-oriented image transform based on gaussian derivatives. Signal Process Image Commun 20:801–812CrossRefGoogle Scholar
  11. 11.
    Spillmann L (1994) The herman grid illusion: a tool for studying human perceptive field organization. Perception 23:691–708CrossRefGoogle Scholar
  12. 12.
    Wolfe JM (1984) Global factors in the hermann grid illusion. Perception 13:33–40Google Scholar
  13. 13.
    Young RA (1991) Oh say, can you see? The physiology of vision. SPIE 1453:92–123Google Scholar
  14. 14.
    Baumgartner, G (1960) Indirekte Größenbestimmung der rezeptiven Felder der Retina beim Menschen mittels der Hermannschen Gittertäuschung. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere 272: 21–22Google Scholar
  15. 15.
    Young RA (1991) Oh say, can you see? the physiology of vision. SPIE 1453:92–123CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Graduate School of Mathematical SciencesThe University of Tokyo/JST CRESTMeguro-kuJapan

Personalised recommendations