Discrete Isoperimetric Deformation of Discrete Curves

  • Jun -ichi Inoguchi
  • Kenji Kajiwara
  • Nozomu Matsuura
  • Yasuhiro Ohta
Chapter
Part of the Mathematics for Industry book series (MFI, volume 4)

Abstract

We consider isoperimetric deformations of discrete plane/space curves. We first give a brief review of the theory of isoperimetric deformation of smooth curves, which naturally gives rise to the modified KdV (mKdV) equation as a deformation equation of the curvature. We then present its discrete model described by the discrete mKdV equation, which is formulated as the isoperimetric equidistant deformation of discrete curves. We next give a review of isoperimetric and torsion-preserving deformation of smooth space curves with constant torsion which is described by the mKdV equation. We formulate a discrete analogue of it as the isoperimetric, torsion-preserving and equidistant deformation on the osculating planes of space discrete curves. The deformation admits two discrete flows, namely by the discrete mKdV equation and by the discrete sine-Gordon equation. We also show that one can make an arbitrary choice of two flows at each step, which is controlled by tuning the deformation parameters appropriately.

Keywords

Curve motion Discrete curve Integrable systems Discrete differential geometry Modified KdV equation Discrete modified KdV equation Discrete sine-Gordon equation 

References

  1. 1.
    Bobenko A, Pinkall U (1996) Discrete surfaces with constant negative Gaussian curvature and the Hirota equation. J Diff Geom 43:527–611MATHMathSciNetGoogle Scholar
  2. 2.
    Doliwa A, Santini PM (1994) An elementary geometric characterization of the integrable motions of a curve. Phys Lett A 185:373–384CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Doliwa A, Santini PM (1995) Integrable dynamics of a discrete curve and the Ablowitz-Ladik hierarchy. J Math Phys 36:1259–1273CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Doliwa A, Santini PM (1996) The integrable dynamics of a discrete curve. In: Levi D, Vinet L, Winternitz P (eds) Symmetries and integrability of difference equations. CRM proceedings and lecture notes, vol 9. American Mathematical Society, Providence, RI, pp 91–102Google Scholar
  5. 5.
    Eyring H (1932) The resultant electric moment of complex molecules. Phys Rev 39:746–748CrossRefGoogle Scholar
  6. 6.
    Goldstein RE, Petrich DM (1991) The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane. Phys Rev Lett 67:3203–3206CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Hasimoto H (1972) A soliton on a vortex filament. J Fluid Mech 51:477–485CrossRefMATHGoogle Scholar
  8. 8.
    Hirota R (1977) Nonlinear partial difference equations III; discrete sine-Gordon equation. J Phys Soc Jpn 43:2079–2086CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hirota R (1998) Discretization of the potential modified KdV equation. J Phys Soc Jpn 67:2234–2236CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Hisakado M, Nakayama K, Wadati M (1995) Motion of discrete curves in the plane. J Phys Soc Jpn 64:2390–2393CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Hisakado M, Wadati M (1996) Moving discrete curve and geometric phase. Phys Lett A 214:252–258CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Hoffmann T (2008) Discrete Hashimoto surfaces and a doubly discrete smoke-ring flow. In: Bobenko AI, Schröder P, Sullivan JM, Ziegler GM (eds) Discrete differential geometry. Oberwolfach seminars, vol 38. Birkhäuser, Basel, pp 95–115Google Scholar
  13. 13.
    Hoffmann T (2009) Discrete differential geometry of curves and surfaces. COE lecture notes, vol 18. Kyushu University, FukuokaGoogle Scholar
  14. 14.
    Hoffmann T, Kutz N (2004) Discrete curves in \(\mathbb{C}P^1\) and the Toda lattice. Stud Appl Math 113:31–55CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Inoguchi J, Kajiwara K, Matsuura N, Ohta Y (2012) Motion and Bäcklund transformations of discrete plane curves. Kyushu J Math 66:303–324CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Inoguchi J, Kajiwara K, Matsuura N, Ohta Y (2012) Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves. J Phys A: Math Theor 45:045206CrossRefMathSciNetGoogle Scholar
  17. 17.
    Inoguchi J, Kajiwara K, Matsuura N, Ohta Y (preprint) Discrete mKdV and discrete sine-Gordon flows on discrete space curves. arXiv:1311.4245
  18. 18.
    Lamb G Jr (1976) Solitons and the motion of helical curves. Phys Rev Lett 37:235–237CrossRefMathSciNetGoogle Scholar
  19. 19.
    Langer J, Perline R (1998) Curve motion inducing modified Korteweg-de Vries systems. Phys Lett A 239:36–40CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Matsuura N (2012) Discrete KdV and discrete modified KdV equations arising from motions of planar discrete curves. Int Math Res Not 2012:1681–1698MATHMathSciNetGoogle Scholar
  21. 21.
    Nakayama K (2007) Elementary vortex filament model of the discrete nonlinear Schrödinger equation. J Phys Soc Jpn 76:074003CrossRefGoogle Scholar
  22. 22.
    Nakayama K, Segur H, Wadati M (1992) Integrability and the motions of curves. Phys Rev Lett 69:2603–2606CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Nishinari K (1999) A discrete model of an extensible string in three-dimensional space. J Appl Mech 66:695–701CrossRefGoogle Scholar
  24. 24.
    Pinkall U, Springborn B, Weißmann S (2007) A new doubly discrete analogue of smoke ring flow and the real time simulation of fluid flow. J Phys A: Math Theor 40:12563–12576CrossRefMATHGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Jun -ichi Inoguchi
    • 1
  • Kenji Kajiwara
    • 2
  • Nozomu Matsuura
    • 3
  • Yasuhiro Ohta
    • 4
  1. 1.Department of Mathematical SciencesYamagata UniversityYamagataJapan
  2. 2.Institute of Mathematics for IndustryFukuokaJapan
  3. 3.Department of Applied MathematicsFukuoka UniversityFukuokaJapan
  4. 4.Department of MathematicsKobe UniversityKobeJapan

Personalised recommendations