Oxygenation of Nonnative Substrates Using a Malfunction State of Cytochrome P450s



The substrate specificity of bacterial cytochrome P450s is very high. Therefore, their catalytic activities toward nonnative substrates are low, whereas their inherent catalytic activities are very high compared with P450s isolated from animals and plants. Using “decoy” molecules, whose structures are very similar to natural substrates, to trick their substrate recognition with decoy molecules, we can induce a malfunction state of cytochrome P450s. Decoy molecule binding under this malfunction state allows bacterial cytochrome P450s to catalyze the oxidation reaction of nonnative substrates. This system using decoy molecules does not require any substitution of amino acids to alter substrate specificity or any changes in the enantioselectivity of nonnative substrate oxidation.


Bacterial cytochrome P450s Decoy molecules Nonnative substrates Substrate misrecognition Substrate specificity 



This work was supported by Grants-in-Aid for Scientific Research (S) to Y.W. (24225004) and a Grant-in-Aid for Young Scientists (A) to O.S. (21685018) from the Ministry of Education, Culture, Sports, Science, and Technology (Japan).


  1. Banks RE, Tatlow JC (1986) A guide to modern organofluorine chemistry. J Fluor Chem 33:227–346CrossRefGoogle Scholar
  2. Bell SG, Stevenson JA, Boyd HD, Campbell S, Riddle AD, Orton EL, Wong LL (2002) Butane and propane oxidation by engineered cytochrome P450(cam). Chem Commun (5):490–491Google Scholar
  3. Bell SG, Orton E, Boyd H, Stevenson JA, Riddle A, Campbell S, Wong LL (2003) Engineering cytochrome P450cam into an alkane hydroxylase. Dalton Trans 11:2133–2140CrossRefGoogle Scholar
  4. Boddupalli SS, Pramanik BC, Slaughter CA, Estabrook RW, Peterson JA (1992) Fatty-acid monooxygenation by P450bm-3: product identification and proposed mechanisms for the sequential hydroxylation reactions. Arch Biochem Biophys 292:20–28CrossRefPubMedGoogle Scholar
  5. Chen MMY, Snow CD, Vizcarra CL, Mayo SL, Arnold FH (2012) Comparison of random mutagenesis and semi-rational designed libraries for improved cytochrome P450 BM3-catalyzed hydroxylation of small alkanes. Protein Eng Des Sel 25:171–178CrossRefPubMedGoogle Scholar
  6. Daff SN, Chapman SK, Turner KL, Holt RA, Govindaraj S, Poulos TL, Munro AW (1997) Redox control of the catalytic cycle of flavocytochrome P-450 BM3. Biochemistry 36:13816–13823CrossRefPubMedGoogle Scholar
  7. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochrome P450. Chem Rev 105:2253–2277CrossRefPubMedGoogle Scholar
  8. Dunford HB, Stillman JS (1976) Function and mechanism of action of peroxidases. Coord Chem Rev 19:187–251CrossRefGoogle Scholar
  9. Farinas ET, Alcalde M, Arnold F (2004) Alkene epoxidation catalyzed by cytochrome P450 BM-3 139-3. Tetrahedron 60:525–528CrossRefGoogle Scholar
  10. Fasan R (2012) Tuning P450 enzymes as oxidation catalysts. ACS Catal 2:647–666CrossRefGoogle Scholar
  11. Fasan R, Chen MM, Crook NC, Arnold FH (2007) Engineered alkane-hydroxylating cytochrome P450(BM3) exhibiting native-like catalytic properties. Angew Chem Int Ed 46:8414–8418CrossRefGoogle Scholar
  12. Fasan R, Meharenna YT, Snow CD, Poulos TL, Arnold FH (2008) Evolutionary history of a specialized P450 propane monooxygenase. J Mol Biol 383:1069–1080CrossRefPubMedCentralPubMedGoogle Scholar
  13. Fujishiro T, Shoji O, Watanabe Y (2010) Non-covalent modification of the active site of cytochrome P450 for inverting the stereoselectivity of monooxygenation. Tetrahedron Lett 52:395–397CrossRefGoogle Scholar
  14. Fujishiro T, Shoji O, Nagano S, Sugimoto H, Shiro Y, Watanabe Y (2011) Crystal structure of H2O2-dependent cytochrome P450SPα with its bound fatty acid substrate. J Biol Chem 286:29941–29950CrossRefPubMedCentralPubMedGoogle Scholar
  15. Fujishiro T, Shoji O, Kawakami N, Watanabe T, Sugimoto H, Shiro Y, Watanabe Y (2012) Chiral-substrate-assisted stereoselective epoxidation catalyzed by H2O2-dependent cytochrome P450SPα. Chem Asian J 7:2286–2293CrossRefPubMedGoogle Scholar
  16. Girhard M, Schuster S, Dietrich M, Durre P, Urlacher VB (2007) Cytochrome P450 monooxygenase from Clostridium acetobutylicum: a new [alpha]-fatty acid hydroxylase. Biochem Biophys Res Commun 362:114–119CrossRefPubMedGoogle Scholar
  17. Girvan HM, Marshall KR, Lawson RJ, Leys D, Joyce MG, Clarkson J, Smith WE, Cheesman MR, Munro AW (2004) Flavocytochrome P450 BM3 mutant A264E undergoes substrate-dependent formation of a novel heme iron ligand set. J Biol Chem 279:23274–23286CrossRefPubMedGoogle Scholar
  18. Girvan HM, Toogood HS, Littleford RE, Seward HE, Smith WE, Ekanem IS, Leys D, Cheesman MR, Munro AW (2009) Novel haem co-ordination variants of flavocytochrome P450 BM3. Biochem J 417:65–76CrossRefPubMedGoogle Scholar
  19. Imai Y, Matsunaga I, Kusunose E, Ichihara K (2000) Unique heme environment at the putative distal region of hydrogen peroxide-dependent fatty acid [alpha]-hydroxylase from Sphingomonas paucimobilis (peroxygenase P450(SP[alpha])). J Biochem (Tokyo) 128:189–194CrossRefGoogle Scholar
  20. Kawakami N, Shoji O, Watanabe Y (2011) Use of perfluorocarboxylic acids to trick cytochrome P450BM3 into initiating the hydroxylation of gaseous alkanes. Angew Chem Int Ed 50:5315–5318CrossRefGoogle Scholar
  21. Kawakami N, Shoji O, Watanabe Y (2013) Direct hydroxylation of primary carbons in small alkanes by wild-type cytochrome P450BM3 containing perfluorocarboxylic acids as decoy molecules. Chem Sci 4:2344–2348CrossRefGoogle Scholar
  22. Lee D-S, Yamada A, Matsunaga I, Ichihara K, S-i A, Park S-Y, Shiro Y (2002) Crystallization and preliminary X-ray diffraction analysis of fatty-acid hydroxylase cytochrome P450BS[beta] from Bacillus subtilis. Acta Crystallogr D 58:687–689CrossRefPubMedGoogle Scholar
  23. Lee DS, Yamada A, Sugimoto H, Matsunaga I, Ogura H, Ichihara K, Adachi S, Park SY, Shiro Y (2003) Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis. Crystallographic, spectroscopic, and mutational studies. J Biol Chem 278:9761–9767CrossRefPubMedGoogle Scholar
  24. Li HY, Poulos TL (1997) The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat Struct Biol 4:140–146CrossRefPubMedGoogle Scholar
  25. Matsunaga I, Shiro Y (2004) Peroxide-utilizing biocatalysts: structural and functional diversity of heme-containing enzymes. Curr Opin Chem Biol 8:127–132CrossRefPubMedGoogle Scholar
  26. Matsunaga I, Yamada M, Kusunose E, Nishiuchi Y, Yano I, Ichihara K (1996) Direct involvement of hydrogen peroxide in bacterial [alpha]-hydroxylation of fatty acid. FEBS Lett 386:252–254CrossRefPubMedGoogle Scholar
  27. Matsunaga I, Yokotani N, Gotoh O, Kusunose E, Yamada M, Ichihara K (1997) Molecular cloning and expression of fatty acid alpha-hydroxylase from Sphingomonas paucimobilis. J Biol Chem 272:23592–23596CrossRefPubMedGoogle Scholar
  28. Matsunaga I, Sumimoto T, Kusunose E, Ichihara K (1998a) Phytanic acid alpha-hydroxylation by bacterial cytochrome P450. Lipids 33:1213–1216CrossRefPubMedGoogle Scholar
  29. Matsunaga I, Yamada M, Kusunose E, Miki T, Ichihara K (1998b) Further characterization of hydrogen peroxide-dependent fatty acid {alpha}-hydroxylase from Sphingomonas paucimobilis. J Biochem (Tokyo) 124:105–110CrossRefGoogle Scholar
  30. Matsunaga I, Ueda A, Fujiwara N, Sumimoto T, Ichihara K (1999) Characterization of the ybdT gene product of Bacillus subtilis: novel fatty acid [beta]-hydroxylating cytochrome P450. Lipids 34:841–846CrossRefPubMedGoogle Scholar
  31. Matsunaga I, Sumimoto T, Ueda A, Kusunose E, Ichihara K (2000) Fatty acid-specific, regiospecific, and stereospecific hydroxylation by cytochrome P450 (CYP152B1) from Sphingomonas paucimobilis: substrate structure required for [alpha]-hydroxylation. Lipids 35:365–371CrossRefPubMedGoogle Scholar
  32. Matsunaga I, Ueda A, Sumimoto T, Ichihara K, Ayata M, Ogura H (2001) Site-directed mutagenesis of the putative distal helix of peroxygenase cytochrome P450. Arch Biochem Biophys 394:45–53CrossRefPubMedGoogle Scholar
  33. Matsunaga I, Sumimoto T, Ayata M, Ogura H (2002a) Functional modulation of a peroxygenase cytochrome P450: novel insight into the mechanisms of peroxygenase and peroxidase enzymes. FEBS Lett 528:90–94CrossRefPubMedGoogle Scholar
  34. Matsunaga I, Yamada A, Lee DS, Obayashi E, Fujiwara N, Kobayashi K, Ogura H, Shiro Y (2002b) Enzymatic reaction of hydrogen peroxide-dependent peroxygenase cytochrome P450s: kinetic deuterium isotope effects and analyses by resonance Raman spectroscopy. Biochemistry 41:1886–1892CrossRefPubMedGoogle Scholar
  35. Meinhold P, Peters MW, Chen MMY, Takahashi K, Arnold FH (2005) Direct conversion of ethane to ethanol by engineered cytochrome P450BM3. ChemBioChem 6:1765–1768CrossRefPubMedGoogle Scholar
  36. Murataliev MB, Feyereisen R (1996) Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain. Biochemistry 35:15029–15037CrossRefPubMedGoogle Scholar
  37. Narhi LO, Fulco AJ (1986) Characterization of a catalytically self-sufficient 119,000-Dalton cytochrome-P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 261:7160–7169PubMedGoogle Scholar
  38. Noble MA, Miles CS, Chapman SK, Lysek DA, Mackay AC, Reid GA, Hanzlik RP, Munro AW (1999) Roles of key active-site residues in flavocytochrome P450 BM3. Biochem J 339:371–379CrossRefPubMedCentralPubMedGoogle Scholar
  39. Ortiz de Montellano PR (2005) Cytochrome P450: structure, mechanism, and biochemistry. Plenum, New YorkCrossRefGoogle Scholar
  40. Ost TWB, Clark J, Mowat CG, Miles CS, Walkinshaw MD, Reid GA, Chapman SK, Daff S (2003) Oxygen activation and electron transfer in flavocytochrome P450BM3. J Am Chem Soc 125:15010–15020CrossRefPubMedGoogle Scholar
  41. Ravichandran KG, Boddupalli SS, Hasemann CA, Peterson JA, Deisenhofer J (1993) Crystal structure of hemoprotein domain of P450bm-3, a prototype for microsomal P450s. Science 261:731–736CrossRefPubMedGoogle Scholar
  42. Rittle J, Green MT (2010) Cytochrome P450 compound I: capture, characterization, and C–H bond activation kinetics. Science 330:933–937CrossRefPubMedGoogle Scholar
  43. Schmidt RJ (2005) Industrial catalytic processes—phenol production. Appl Catal A 280:89–103CrossRefGoogle Scholar
  44. Shoji O, Fujishiro T, Nakajima H, Kim M, Nagano S, Shiro Y, Watanabe Y (2007) Hydrogen peroxide dependent monooxygenations by tricking the substrate recognition of cytochrome P450BSβ. Angew Chem Int Ed 46:3656–3659CrossRefGoogle Scholar
  45. Shoji O, Fujishiro T, Nagano S, Tanaka S, Hirose T, Shiro Y, Watanabe Y (2010a) Understanding substrate misrecognition of hydrogen peroxide dependent cytochrome P450 from Bacillus subtilis. J Biol Inorg Chem 15:1331–1339CrossRefPubMedGoogle Scholar
  46. Shoji O, Wiese C, Fujishiro T, Shirataki C, Wünsch B, Watanabe Y (2010b) Aromatic C–H bond hydroxylation by P450 peroxygenases: a facile colorimetric assay for monooxygenation activities of enzymes based on Russig’s blue formation. J Biol Inorg Chem 15:1109–1115CrossRefPubMedGoogle Scholar
  47. Shoji O, Kunimatsu T, Kawakami N, Watanabe Y (2013) Highly selective hydroxylation of benzene to phenol by wild-type cytochrome P450BM3 assisted by decoy molecules. Angew Chem Int Ed 52:6606–6610CrossRefGoogle Scholar
  48. Sligar SG (1976) Coupling of spin, substrate, and redox equilibria in cytochrome P450. Biochemistry 15:5399–5406CrossRefPubMedGoogle Scholar
  49. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96:2841–2888CrossRefPubMedGoogle Scholar
  50. Whitehouse CJC, Bell SG, Wong LL (2012) P450(Bm3) (Cyp102a1): connecting the dots. Chem Soc Rev 41:1218–1260CrossRefPubMedGoogle Scholar
  51. Zhai PM, Wang LQ, Liu CH, Zhang SC (2005) Deactivation of zeolite catalysts for benzene oxidation to phenol. Chem Eng J 111:1–4CrossRefGoogle Scholar
  52. Zilly FE, Acevedo JP, Augustyniak W, Deege A, Hausig UW, Reetz MT (2011) Tuning a P450 enzyme for methane oxidation. Angew Chem Int Ed 50:2720–2724CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Chemistry, Graduate School of ScienceNagoya UniversityNagoyaJapan
  2. 2.Research Center for Materials ScienceNagoya UniversityNagoyaJapan

Personalised recommendations