Skip to main content

Metabolic Diversity and Cytochromes P450 of Fungi

  • Chapter
  • First Online:
Fifty Years of Cytochrome P450 Research
  • 1666 Accesses

Abstract

Many fungal species exhibit unique and superior metabolic functions, including secondary metabolite production and detoxification of environmental pollutants, which are associated with cytochrome P450-dependent reactions. In the last decade, fungal genome projects have uncovered the astonishing molecular diversity of P450s in the fungal kingdom. The tremendous variation among the P450s implies that fungi have vigorously diversified P450 functions to meet novel metabolic needs. Fungal P450s discovered from genome projects are often categorized into novel families and subfamilies, suggesting that fungal P450s possess greater divergence than the animal, plant, or bacterial P450s. It is a challenging task to exploit the catalytic functions of the numerous P450s to better understand the biology of fungal metabolic systems. Comprehensive information about the functions of the P450s will also give hints about how to use their catalytic potentials in the biotechnology sector; however, experimental screening remains essential to reveal the catalytic potentials of individual P450s. In this chapter, the fungal metabolic systems in which P450s play a role are described, and the molecular and functional diversity and potential uses of fungal P450s are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amborabe BE, Fleurat-Lessard P, Chollet JF, Roblin G (2002) Antifungal effects of salicylic acid and other benzoic acid derivatives towards Eutypa lata: structure–activity relationship. Plant Phys Biochem 40:1051–1060

    Article  CAS  Google Scholar 

  • Aoyama Y, Yoshida Y, Sato R (1984) Yeast cytochrome P-450 catalyzing lanosterol 14 alpha-demethylation. II. Lanosterol metabolism by purified P-450(14)DM and by intact microsomes. J Biol Chem 259:1661–1666

    CAS  PubMed  Google Scholar 

  • Aoyama Y, Horiuchi T, Gotoh O, Noshiro M, Yoshida Y (1998) CYP51 -like gene of Mycobacterium tuberculosis actually encodes a P450 similar to eukaryotic CYP51. J Biochem (Tokyo) 124:694–696

    Article  CAS  Google Scholar 

  • Becher R, Weihmann F, Deising HB, Wirsel SG (2011) Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses. BMC Genomics 12:52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bellamine A, Mangla AT, Nes WD, Waterman MR (1999) Characterization and catalytic properties of the sterol 14alpha-demethylase from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 96:8937–8942

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blackwell M (2011) The Fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  • Blanchette RA (1991) Delignification by wood-decay fungi. Annu Rev Phytopathol 29:381–398

    Article  CAS  Google Scholar 

  • Chapman DJ, Ragan MA (1980) Evolution of biochemical pathways: evidence from comparative biochemistry. Annu Rev Plant Physiol 31:639–678

    Article  CAS  Google Scholar 

  • Chen S, Xu J, Liu C et al (2012) Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun 3:913

    Article  PubMed Central  PubMed  Google Scholar 

  • Chigu NL, Hirosue S, Nakamura C, Teramoto H, Ichinose H, Wariishi H (2010) Cytochrome P450 monooxygenases involved in anthracene metabolism by the white-rot basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 87:1907–1916

    Article  CAS  PubMed  Google Scholar 

  • Cornell MJ, Alam I, Soanes DM, Wong HM, Hedeler C, Paton NW, Rattray M, Hubbard SJ, Talbot NJ, Oliver SG (2007) Comparative genome analysis across a kingdom of eukaryotic organisms: specialization and diversification in the fungi. Genome Res 17:1809–1822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deng J, Carbone I, Dean RA (2007) The evolutionary history of cytochrome P450 genes in four filamentous Ascomycetes. BMC Evol Biol 7:30

    Article  PubMed Central  PubMed  Google Scholar 

  • Doddapaneni H, Yadav JS (2005) Microarray-based global differential expression profiling of P450 monooxygenases and regulatory proteins for signal transduction pathways in the white rot fungus Phanerochaete chrysosporium. Mol Genet Genomics 274:454–466

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich KC, Chang PK, Yu J, Cotty PJ (2004) Aflatoxin biosynthesis cluster gene cypA is required for G aflatoxin formation. Appl Environ Microbiol 70:6518–6524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eriksson K-EL, Blanchette RA, Ander P (1990) Biodegradation of lignin. In: Timell TE (ed) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin, pp 225–333

    Chapter  Google Scholar 

  • Fahr K, Wetzstein HG, Grey R, Schlosser D (1999) Degradation of 2,4-dichlorophenol and pentachlorophenol by two brown rot fungi. FEMS Microbiol Lett 175:127–132

    Article  CAS  PubMed  Google Scholar 

  • Ferrer-Sevillano F, Fernández-Cañón JM (2007) Novel phacB-encoded cytochrome P450 monooxygenase from Aspergillus nidulans with 3-hydroxyphenylacetate 6-hydroxylase and 3,4-dihydroxyphenylacetate 6-hydroxylase activities. Eukaryot Cell 6:514–520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA et al (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719

    Article  CAS  PubMed  Google Scholar 

  • Golan-Rozen N, Chefetz B, Ben-Ari J, Geva J, Hadar Y (2011) Transformation of the recalcitrant pharmaceutical compound carbamazepine by Pleurotus ostreatus: role of cytochrome P450 monooxygenase and manganese peroxidase. Environ Sci Technol 45:6800–6805

    Article  CAS  PubMed  Google Scholar 

  • Gold MH, Wariishi H, Valli K (1989) Extracellular peroxidases involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium. In: Whitaker JR, Sonnet PE (eds) Biocatalysis in agricultural biotechnology. American Chemical Society Symposium Series, vol 389. American Chemical Society, Washington, DC, pp 127–140

    Google Scholar 

  • Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Hirosue S, Tazaki M, Hiratsuka N, Yanai S, Kabumoto H, Shinkyo R, Arisawa A, Sakaki T, Tsunekawa H, Johdo O, Ichinose H, Wariishi H (2011) Insight into functional diversity of cytochrome P450 in the white-rot basidiomycete Phanerochaete chrysosporium: involvement of versatile monooxygenase. Biochem Biophys Res Commun 407:118–123

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Sillaots S, Lemieux S, Davison J, Kauffman S, Breton A, Linteau A, Xin C, Bowman J, Becker J, Jiang B, Roemer T (2007) Essential gene identification and drug target prioritization in Aspergillus fumigatus. PLoS Pathog 3:e24

    Article  PubMed Central  PubMed  Google Scholar 

  • Ichinose H, Wariishi H (2012) Heterologous expression and mechanistic investigation of a fungal cytochrome P450 (CYP51 50A2): involvement of alternative redox partners . Arch Biochem Biophys 518:8–15

    Article  CAS  PubMed  Google Scholar 

  • Ichinose H, Wariishi H, Tanaka H (1999) Biotransformation of recalcitrant 4-methyldibenzothiophene to water-extractable products using lignin-degrading basidiomycete Coriolus versicolor. Biotechnol Prog 15:706–714

    Article  CAS  PubMed  Google Scholar 

  • Ichinose H, Wariishi H, Tanaka H (2002) Identification and heterologous expression of the cytochrome P450 oxidoreductase from the white-rot basidiomycete Coriolus versicolor. Appl Microbiol Biotechnol 59:658–664

    Article  CAS  PubMed  Google Scholar 

  • Ide M, Ichinose H, Wariishi H (2012) Molecular identification and functional characterization of cytochrome P450 monooxygenases from the brown-rot basidiomycete Postia placenta. Arch Microbiol 194:243–253

    Article  CAS  PubMed  Google Scholar 

  • Itoh N, Yoshida M, Miyamoto T, Ichinose H, Wariishi H, Tanaka H (1997) Fungal cleavage of thioether bond found in yperite. FEBS Lett 412:281–284

    Article  CAS  PubMed  Google Scholar 

  • Kahn RA, Bak S, Olsen CE, Svendsen I, Moller BL (1996) Isolation and reconstitution of the heme-thiolate protein obtusifoliol 14alpha-demethylase from Sorghum bicolor (L.) Moench. J Biol Chem 271:32944–32950

    Article  CAS  PubMed  Google Scholar 

  • Kamada F, Abe S, Hiratsuk N, Wariish H, Tanaka H (2002) Mineralization of aromatic compounds by brown-rot basidiomycetes -mechanisms involved in initial attack on the aromatic ring. Microbiology 148:1939–1946

    CAS  PubMed  Google Scholar 

  • Kasai N, Ikushiro S, Hirosue S, Arisawa A, Ichinose H, Uchida Y, Wariishi H, Ohta M, Sakaki T (2010) Atypical kinetics of cytochromes P450 catalysing 3′-hydroxylation of flavone from the white-rot fungus Phanerochaete chrysosporium. J Biochem (Tokyo) 147:117–125

    Article  CAS  Google Scholar 

  • Kelly SL, Lamb DC, Baldwin BC, Kelly DE (1993) Benzo(a)pyrene hydroxylase activity in yeast is mediated by P450 other than sterol 14 alpha-demethylase. Biochem Biophys Res Commun 197:428–432

    Article  CAS  PubMed  Google Scholar 

  • Kelly SL, Lamb DC, Corran AJ, Baldwin BC, Parks LW, Kelly DE (1995) Purification and reconstitution of activity of Saccharomyces cerevisiae P450 61, a sterol Δ22-desaturase. FEBS Lett 377:217–220

    Article  CAS  PubMed  Google Scholar 

  • Kelly DE, Kraševec N, Mullins J, Nelson DR (2009) The CYPome (cytochrome P450 complement) of Aspergillus nidulans. Fungal Genet Biol 46:S53–S61

    Article  CAS  PubMed  Google Scholar 

  • Kensler TW, Roebuck BD, Wogan GN, Groopman JD (2011) Aflatoxin: a 50-year odyssey of mechanistic and translational toxicology. Toxicol Sci 120(suppl 1):S28–S48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kerem Z, Bao W, Hammel KE (1998) Rapid polyether cleavage via extracellular one-electron oxidation by a brown-rot basidiomycete. Proc Natl Acad Sci USA 95:10373–10377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M (2007) Molecular and genetic studies of fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem 71:2105–2123

    Article  CAS  PubMed  Google Scholar 

  • Kirk TK, Adler E (1970) Methoxy-deficient structural elements in lignin of sweetgum decayed by brown-rot fungus. Acta Chem Scand 24:3379–3390

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  PubMed  Google Scholar 

  • Kitazume T, Takaya N, Nakayama N, Shoun H (2000) Fusarium oxysporum fatty-acid subterminal hydroxylase (CYP505 ) is a membrane-bound eukaryotic counterpart of Bacillus megaterium cytochrome P450BM3. J Biol Chem 275:39734–39740

    Article  CAS  PubMed  Google Scholar 

  • Lamb DC, Kelly DE, Manning NJ, Kaderbhai MA, Kelly SL (1999) Biodiversity of the P450 catalytic cycle: yeast cytochrome b5 /NADH cytochrome b5 reductase complex efficiently drives the entire sterol 14-demethylation (CYP51 ) reaction. FEBS Lett 462:283–288

    Article  CAS  PubMed  Google Scholar 

  • Lepesheva GI, Waterman MR (2007) Sterol 14alpha-demethylase cytochrome P450 (CYP51 ), a P450 in all biological kingdoms. Biochim Biophys Acta 1770:467–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • MacDonald J, Doering M, Canam T, Gong Y, Guttman DS, Campbell MM, Master ER (2011) Transcriptomic responses of the softwood-degrading white-rot fungus Phanerochaete carnosa during growth on coniferous and deciduous wood. Appl Environ Microbiol 77:3211–3218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Machida M, Asai K, Sano M et al (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature (Lond) 438:1157–1161

    Article  Google Scholar 

  • Marco-Urrea E, Pérez-Trujillo M, Caminal G, Vicent T (2009) Dechlorination of 1,2,3- and 1,2,4-trichlorobenzene by the white-rot fungus Trametes versicolor. J Hazard Mater 166:1141–1147

    Article  CAS  PubMed  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N et al (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  CAS  PubMed  Google Scholar 

  • Masaphy S, Levanon D, Henis Y, Venkateswarlu K, Kelly SL (1995) Microsomal and cytosolic cytochrome P450 mediated benzo[a]pyrene hydroxylation in Pleurotus pulmonarius. Biotechnol Lett 17:969–974

    Article  Google Scholar 

  • Masaphy S, Levanon D, Henis Y, Venkateswarlu K, Kelly SL (1996) Evidence for cytochrome P-450 and P-450-mediated benzo(a)pyrene hydroxylation in the white rot fungus Phanerochaete chrysosporium. FEMS Microbiol Lett 135:51–55

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki F, Wariishi H (2004) Functional diversity of cytochrome P450s of the white-rot fungus Phanerochaete chrysosporium. Biochem Biophys Res Commun 324:387–393

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki F, Wariishi H (2005) Molecular characterization of cytochrome P450 catalyzing hydroxylation of benzoates from the white-rot fungus Phanerochaete chrysosporium. Biochem Biophys Res Commun 334:1184–1190

    Article  CAS  PubMed  Google Scholar 

  • Moktali V, Park J, Fedorova-Abrams ND, Park B, Choi J, Lee YH, Kang S (2012) Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genomics 13:525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakayama N, Takemae A, Shoun H (1996) Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum. J Biochem (Tokyo) 119:435–440

    Article  CAS  Google Scholar 

  • Nazir KHMNH, Ichinose H, Wariishi H (2010) Molecular characterization and isolation of cytochrome P450 genes from the filamentous fungus Aspergillus oryzae. Arch Microbiol 192:395–408

    Article  Google Scholar 

  • Nazir KHMNH, Ichinose H, Wariishi H (2011) Construction and application of a functional library of cytochrome P450 monooxygenases from the filamentous fungus Aspergillus oryzae. Appl Environ Microbiol 77:3147–3150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nelson DR (2011) Progress in tracing the evolutionary paths of cytochrome P450. Biochim Biophys Acta 1814:14–18

    Article  CAS  PubMed  Google Scholar 

  • Niemenmaa O, Uusi-Rauva A, Hatakka A (2008) Demethoxylation of [O14CH3]-labelled lignin model compounds by the brown-rot fungi Gloeophyllum trabeum and Poria (Postia) placenta. Biodegradation 19:555–565

    Article  CAS  PubMed  Google Scholar 

  • Podobnik B, Stojan J, Lah L, Krasevec N, Seliskar M, Rizner TL et al (2008) CYP53 A15 of Cochliobolus lunatus, a target for natural antifungal compounds. J Med Chem 51:3480–3486

    Article  CAS  PubMed  Google Scholar 

  • Prieto R, Woloshuk CP (1997) ord1, an oxidoreductase gene responsible for conversion of O-methylsterigmatocystin to aflatoxin in Aspergillus flavus. Appl Environ Microbiol 63:1661–1666

    PubMed Central  CAS  PubMed  Google Scholar 

  • Prieto A, Möder M, Rodil R, Adrian L, Marco-Urre E (2011) Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Bioresour Technol 102:10987–10995

    Article  CAS  PubMed  Google Scholar 

  • Proctor RH, Brown DW, Plattner RD, Desjardins AE (2003) Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet Biol 38:237–249

    Article  CAS  PubMed  Google Scholar 

  • Shyadehi AZ, Lamb DC, Kelly SL, Kelly DE, Schunck WH, Wright JN, Corina D, Akhtar M (1996) The mechanism of the acyl-carbon bond cleavage reaction catalyzed by recombinant sterol 14 alpha- demethylase of Candida albicans (other names are lanosterol 14 alpha-demethylase, P-45014DM, and CYP51 ). J Biol Chem 271:12445–12450

    Article  CAS  PubMed  Google Scholar 

  • Skaggs BA, Alexander JF, Pierson CA, Schweitzer KS, Chun KT, Koegel C, Barbuch R, Bard M (1996) Cloning and characterization of the Saccharomyces cerevisiae C-22 sterol desaturase gene, encoding a second cytochrome P-450 involved in ergosterol biosynthesis. Gene (Amst) 169:105–109

    Article  CAS  Google Scholar 

  • Subramanian V, Yadav JS (2009) Role of P450 monooxygenases in the degradation of the endocrine-disrupting chemical nonylphenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 75:5570–5580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sutherland JB, Selby AL, Freeman JP, Evans FE, Cerniglia CE (1991) Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol 57:3310–3316

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sutter TR, Loper JC (1989) Disruption of the Saccharomyces cerevisiae gene for NADPH-cytochrome P450 reductase causes increased sensitivity to ketoconazole. Biochem Biophys Res Commun 160:1257–1266

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, MacDonald J, Syed K, Salamov A, Hori C et al (2012) Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize. BMC Genomics 13:444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Syed K, Doddapaneni H, Subramanian V, Lam YW, Yadav JS (2010) Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbon s (PAH s). Biochem Biophys Res Commun 399:492–497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Syed K, Kattamuri C, Thompson TB, Yadav JS (2011) Cytochrome b5 reductase-cytochrome b 5 as an active P450 redox enzyme system in Phanerochaete chrysosporium: atypical properties and in vivo evidence of electron transfer capability to CYP63A2. Arch Biochem Biophys 509:26–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Syed K, Nelson DR, Riley R, Yadav JS (2013a) Genome-wide annotation and comparative genomics of cytochrome P450 monooxygenases (P450s) in the polyporale species Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora. Mycologia 105:1445–1455

    Article  CAS  PubMed  Google Scholar 

  • Syed K, Porollo A, Lam YW, Grimmett PE, Yadav JS (2013b) CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbon s, alkylphenols, and alkanes. Appl Environ Microbiol 79:2692–2702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teramoto H, Tanaka H, Wariishi H (2004a) Degradation of 4-nitrophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 66:312–317

    Article  CAS  PubMed  Google Scholar 

  • Teramoto H, Tanaka H, Wariishi H (2004b) Fungal cytochrome P450s catalyzing hydroxylation of substituted toluenes to form their hydroxymethyl derivatives. FEMS Microbiol Lett 234:255–260

    Article  CAS  PubMed  Google Scholar 

  • Tokai T, Koshino H, Takahashi-Ando N, Sato M, Fujimura M, Kimura M (2007) Fusarium Tri4 encodes a key multifunctional cytochrome P450 monooxygenase for four consecutive oxygenation steps in trichothecene biosynthesis. Biochem Biophys Res Commun 353:412–417

    Article  CAS  PubMed  Google Scholar 

  • Troncoso C, Cárcamo J, Hedden P, Tudzynski B, Rojas MC (2008) Influence of electron transport proteins on the reactions catalyzed by Fusarium fujikuroi gibberellin monooxygenases. Phytochemistry 69:672–683

    Article  CAS  PubMed  Google Scholar 

  • Trzaskos J, Kawata S, Gaylor JL (1986) Microsomal enzymes of cholesterol biosynthesis. Purification of lanosterol 14 alpha-methyl demethylase cytochrome P-450 from hepatic microsomes. J Biol Chem 261:14651–14657

    CAS  PubMed  Google Scholar 

  • Tudzynski B (2005) Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl Microbiol Biotechnol 66:597–611

    Article  CAS  PubMed  Google Scholar 

  • Tudzynski B, Rojas MC, Gaskin P, Hedden P (2002) The gibberellin 20-oxidase of Gibberella fujikuroi is a multifunctional monooxygenase. J Biol Chem 277:21246–21253

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y (1989) Trichothecene mycotoxin s : mycology, chemistry, and toxicology. Adv Nutr Res 3:301–353

    Google Scholar 

  • van Gorcom RF, Boschloo JG, Kuijvenhoven A, Lange J, van Vark AJ, Bos CJ, van Balken JA, Pouwels PH, van den Hondel CA (1990) Isolation and molecular characterisation of the benzoate-para-hydroxylase gene (bphA) of Aspergillus niger: a member of a new gene family of the cytochrome P450 superfamily. Mol Gen Genet 223:192–197

    Article  PubMed  Google Scholar 

  • Venkateswarlu K, Lamb DC, Kelly DE, Manning NJ, Kelly SL (1998) The N-terminal membrane domain of yeast NADPH-cytochrome P450 (CYP) oxidoreductase is not required for catalytic activity in sterol biosynthesis or in reconstitution of CYP activity. J Biol Chem 273:4492–4496

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Hirai H, Kawagishi H (2012) Biotransformation of acetamiprid by the white-rot fungus Phanerochaete sordida YK-624. Appl Microbiol Biotechnol 93:831–835

    Article  CAS  PubMed  Google Scholar 

  • Waterman MR, Lepesheva GI (2005) Sterol 14 alpha-demethylase, an abundant and essential mixed-function oxidase. Biochem Biophys Res Commun 338:418–422

    Article  CAS  PubMed  Google Scholar 

  • Wetzstein HG, Stadler M, Tichy HV, Dalhoff A, Karl W (1999) Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum. Appl Environ Microbiol 65:1556–1563

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao P, Mori T, Kondo R (2011a) Biotransformation of the organochlorine pesticide trans-chlordane by wood-rot fungi. N Biotechnol 29:107–115

    Article  CAS  PubMed  Google Scholar 

  • Xiao P, Mori T, Kamei I, Kondo R (2011b) A novel metabolic pathway for biodegradation of DDT by the white rot fungi, Phlebia lindtneri and Phlebia brevispora. Biodegradation 22:859–867

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Ma WB, Li Y, Wang H, Que YW, Ma ZH, Talbot NJ, Wang ZY (2011) A sterol 14α-demethylase is required for conidiation, virulence and for mediating sensitivity to sterol demethylation inhibitors by the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol 48:144–153

    Article  CAS  PubMed  Google Scholar 

  • Yelle DJ, Wei D, Ralph J, Hammel KE (2011) Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta. Environ Microbiol 13:1091–1100

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y (1992) Sterol biosynthesis. In: Omura T, Oshimura Y, Fujii-Kuriyama Y (eds) Cytochrome P450, 2nd edn. Kodansha, Tokyo, pp 93–101

    Google Scholar 

  • Yoshida Y, Aoyama Y (1984) Yeast cytochrome P-450 catalyzing lanosterol 14 alpha-demethylation. I. Purification and spectral properties. J Biol Chem 259:1655–1660

    CAS  PubMed  Google Scholar 

  • Yu J, Chang PK, Cary JW, Wright M, Bhatnagar D, Cleveland TE, Payne GA, Linz JE (1995) Comparative mapping of aflatoxin pathway gene clusters in Aspergillus parasiticus and Aspergillus flavus. Appl Environ Microbiol 61:2365–2371

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu J, Chang PK, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW (2004) Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70:1253–1262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Ichinose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Ichinose, H. (2014). Metabolic Diversity and Cytochromes P450 of Fungi. In: Yamazaki, H. (eds) Fifty Years of Cytochrome P450 Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54992-5_11

Download citation

Publish with us

Policies and ethics