Skip to main content

Mathematical Expressions

  • Chapter
  • First Online:
Applied Data-Centric Social Sciences
  • 915 Accesses

Abstract

Statistical methods are useful tools to deal with data on socioeconomic-technological systems. In this chapter, we will address fundamental expressions used in statistics and methods of data analysis: time series analysis, network analysis and spatial analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ngdc.noaa.gov/mgg/global.

  2. 2.

    GADM database: www.gadm.org.

  3. 3.

    http://www.stat.go.jp/english/index.htm.

References

  1. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Caski, F. (eds.) Proceeding of the Second International Symposium on Information Theory, pp. 267–281. Akademiai Kiado, Budapest (1973)

    Google Scholar 

  2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)

    Article  MATH  Google Scholar 

  3. Amante, C., Eakins, B.W.: ETOPO1 1 Arc-Minute Global Relief Model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 Mar 2009

    Google Scholar 

  4. Andrienko, G., Andrienko, N.: Exploratory Analysis of Spatial and Temporal Data- A Systematic Approach. Springer, Berlin (2006)

    MATH  Google Scholar 

  5. Anderson, T.W., Darling, D.A.: Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann. Math. Stat. 23, 193–212 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anand, K., Bianconi, G.: Entropy measures for networks- Toward an information theory of complex topologies. Phys. Rev. E 80, 045102 (2009)

    Article  Google Scholar 

  7. Anselin, L.: The Moran scatterplot as an ESDA tool to assess local instability in spatial association. In: Fischer, M., Scholten, H., Unwin, D. (eds.) Spatial Analytical Perspectives on GIS, pp. 111–125. Taylor and Francis, London (1996)

    Google Scholar 

  8. Barrat, A., Barthlemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  9. Barthélemy, M.: Spatial networks. Phys. Rep. 499(1–3), 1–101 (2011)

    Article  MathSciNet  Google Scholar 

  10. Bianconi, G.: Entropy of network ensembles. Phys. Rev. E 79, 036114 (2009)

    Article  MathSciNet  Google Scholar 

  11. Bivand, R.S., Gómez-Rubio, V., Pebesma, E.: Applied Spatial Data Analysis with R, 2nd edn. Springer, New York (2013)

    Book  MATH  Google Scholar 

  12. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks—structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2005). http://dx.doi.org/10.1016/j.physrep.2005.10.009

    Google Scholar 

  13. Bonacich, P., Lloyd, P.: Eigenvector-like measures of centrality for asymmetric relations. Soc. Netw. 23, 191–201 (2001)

    Article  Google Scholar 

  14. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT’2010, pp. 177–186. Springer, Berlin (2010)

    Google Scholar 

  15. Box, G.E.P., Jenkins, G.M.: Time Series Analysis, Forcasting and Control. Holden-Day, San Francisco (1976)

    Google Scholar 

  16. Dehmer, M., Mowshowitz, A.: A history of graph entropy measures. Inf. Sci. 181, 57–78 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eshel, G.: Spatiotemporal Data Analysis. Princeton University Press, Princeton (2012)

    MATH  Google Scholar 

  18. Efron, B.: Bootstrap methods—another look at the jackknife. Ann. Stat. 7(1), 1–26 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fischer, M.M., Getis, A. (eds.): Handbook of Applied Spatial Analysis Software Tools, Methods and Applications. Springer, Hidelberg (2011)

    Google Scholar 

  20. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  21. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)

    Article  Google Scholar 

  22. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1978/1979)

    Google Scholar 

  23. Friedman, J., Bohonak, A.J., Levine, R.A.: When are two pieces better than one—fitting and testing OLS and RMA regressions. Environmetrics 24, 306–316 (2013)

    Article  MathSciNet  Google Scholar 

  24. Geary, R.C.: The contiguity ratio and statistical mapping. Inc. Stat. 5(3), 115–127+129–146 (1954)

    Google Scholar 

  25. Huang, W., Zhang, Y.: Estimating structural change in linear simultaneous equations. In: Econometric Society 2004 Australasian Meetings 110, Econometric Society (2004)

    Google Scholar 

  26. Kariya, T., Kurata, H.: Generalized Least Squares. Wiley, Chichester (2004)

    Book  MATH  Google Scholar 

  27. Knight, F.H.: Risk, Uncertainty and Profit. Houghton Mifflin, New York (1921)

    Google Scholar 

  28. Lin, J.: Divergence measures base on the Shannon entropy. IEEE Trans. Info. Theor. 37, 145–151 (1991)

    Article  MATH  Google Scholar 

  29. Moran, P.A.P: Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950)

    Google Scholar 

  30. Mowshowitz, A.: Entropy and the complexity of graphs- I. An index of the relative complexity of a graph. Bull. Math. Biophys. 30, 175–204 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  31. Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67(2), 026126 (2003)

    Article  MathSciNet  Google Scholar 

  32. Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)

    Article  Google Scholar 

  33. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  34. Ord, J.K., Getis, A.: Local spatial autocorrelation statistics—distributional issues and an application. Geogr. Anal. 27(4), 286–306 (1995)

    Article  Google Scholar 

  35. Quenouille, M.H.: Approximate tests of correlation in time-series. J. R. Statist. Soc. B 11, 68–84 (1949)

    MathSciNet  MATH  Google Scholar 

  36. Rashevsky, N.: Life, information theory, and topology. Bull. Math. Biophys. 17, 229–235 (1955)

    Article  MathSciNet  Google Scholar 

  37. Ricker, W.E.: Linear regressions in fishery research. J. Fish. Res. Board Can. 30, 409–434 (1973)

    Article  Google Scholar 

  38. Shao, J., Tu, D.: The Jackknife and Bootstrap. Springer, New York (1995)

    Book  MATH  Google Scholar 

  39. Smirnov, N.: Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat. 19, 279–281 (1948)

    Article  MATH  Google Scholar 

  40. Smith, R.J.: Use and misuse of the reduced major axis for line-fitting. Am. J. Phys. Anthropol. 140(3), 476–486 (2009)

    Article  Google Scholar 

  41. Sokal, R.R., Rohlf, F.J.: Biometry—the principles and practice of statistics in biological research. W. H. Freemann & Company, New York (1995)

    Google Scholar 

  42. Trucco, E.: A note on the information content of graphs. Bull. Math. Biophys. 18, 129–135 (1956)

    Article  MathSciNet  Google Scholar 

  43. Watts, D.J.: Small Worlds—The Dynamics of Networks Between Order and Randomness. Princeton University Press, Princeton (1999)

    Google Scholar 

  44. Weisberg, S.: Applied Linear Regression. Wiley, Hoboken (2005)

    Book  MATH  Google Scholar 

  45. Wilhelm, T., Hollunder, J.: Information theoretic description of networks. Physica A 385, 385–396 (2007)

    Article  MathSciNet  Google Scholar 

  46. Wilks, S.S.: The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9(1), 60–62 (1938)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aki-Hiro Sato .

Appendices

Appendix A: Proof of \(0\ln 0\)

Let us consider

$$\begin{aligned} h = \lim _{x\rightarrow +0} x \ln x. \end{aligned}$$
(3.254)

Putting \(x = e^{-z}\) one has

$$\begin{aligned} h = -\lim _{x\rightarrow +0} z e^{-z}. \end{aligned}$$
(3.255)

By using the Taylor expansion of \(e^{z} = \sum _{k=0}^{\infty }\frac{1}{k!}z^k\), one obtains

$$\begin{aligned} \nonumber h&= -\lim _{z\rightarrow \infty }z e^{-z} \\ \nonumber&= -\lim _{z\rightarrow \infty } z / e^{z} \\ \nonumber&= -\lim _{z\rightarrow \infty } \frac{z}{\sum _{k=0}\frac{1}{k!}z^k} \\ \nonumber&= -\lim _{z\rightarrow \infty } \frac{1}{\sum _{k=0}\frac{1}{k!}z^{k+1}} \\&= 0. \end{aligned}$$
(3.256)

Therefore, we gets

$$\begin{aligned} h = \lim _{x\rightarrow 0} x \ln x = 0 \ln 0 = 0. \end{aligned}$$
(3.257)

Appendix B: Derivation of the Mean Square Error of RMA Regression

The mean square error \(MSE\) of the RMA regression is defined as

$$\begin{aligned} MSE = \frac{1}{T-2}\sum _{i=1}^T (y_i - \hat{a}x_i - \hat{b})^2. \end{aligned}$$
(3.258)

Inserting Eq. (3.70) into Eq. (3.258), we get

$$\begin{aligned} \nonumber MSE&= \frac{1}{T-2}\sum _{i=1}^T (y_i - \hat{a}x_i - \hat{b})^2 \\ \nonumber&= \frac{1}{T-2}\sum _{i=1}^T \Bigl \{y_i - \hat{a}x_i - \Bigl (\frac{\sum _{i=1}^T y_i}{T} - \hat{a} \frac{\sum _{i=1}^T x_i}{T}\Bigr )\Bigr \}^2 \\ \nonumber&= \frac{1}{T-2}\sum _{i=1}^T \Bigl \{\Bigl (y_i - \frac{\sum _{i=1}^T y_i}{T}\Bigr ) - \hat{a}\Bigl (x_i - \frac{\sum _{i=1}^T x_i}{T}\Bigr )\Bigr \}^2 \\ \nonumber&= \frac{1}{T-2}\sum _{i=1}^T \Bigl \{\Bigl (y_i - \frac{\sum _{i=1}^T y_i}{T}\Bigr )^2 + \hat{a}^2\Bigl (x_i - \frac{\sum _{i=1}^T x_i}{T}\Bigr )^2\\&\qquad - 2 \hat{a}\Bigl (x_i - \frac{\sum _{i=1}^T x_i}{T}\Bigr )\Bigl (y_i - \frac{\sum _{i=1}^T y_i}{T}\Bigr )\Bigr \}. \end{aligned}$$
(3.259)

This is also written as

$$\begin{aligned} MSE = \frac{T}{T-2}\Bigl \{\mathrm {Var}[Y] + \hat{a}^2\mathrm {Var}[X] - 2\hat{a}\mathrm {Cov}[X,Y]\Bigr \}. \end{aligned}$$
(3.260)

Inserting Eq. (3.74) into Eq. (3.260), consequently we obtain

$$\begin{aligned} MSE = \Bigl (\mathrm {Var}[Y] - \hat{a}\mathrm {Cov}[X,Y]\Bigr )\frac{2T}{T-2}. \end{aligned}$$
(3.261)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Sato, AH. (2014). Mathematical Expressions. In: Applied Data-Centric Social Sciences. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54974-1_3

Download citation

Publish with us

Policies and ethics