Skip to main content

Abstract

Neurotrophic factors regulate neural cell survival and differentiation and control the number of retinal ganglion cells (RGCs) during retinal development. Several studies have reported a possibility that blockade of axonal transport in glaucoma leads to deficits in the neurotrophic factors and subsequent RGC death in adult eyes. Interestingly, not only mature neurotrophins but also the uncleaved neurotrophin precursors, the pro-neurotrophins, may play a critical role in survival or death of retinal neurons. Neurotrophic factors act on their receptors expressed on RGCs, but they also act on surrounding cells including Müller glia and microglia and indirectly affect the state of RGCs. Although ligand–receptor systems of neurotrophins are complex and their effects are still controversial, clinical trials using neurotrophins are underway for several retinal diseases. The current therapy for glaucoma is to lower intraocular pressure (IOP), but neurotrophic factors may be available for preventing IOP-independent RGC loss and future treatment of glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harada T, Harada C, Parada LF (2007) Molecular regulation of visual system development: more than meets the eye. Genes Dev 21:367–378

    Article  CAS  PubMed  Google Scholar 

  2. Isenmann S, Kretz A, Cellerino A (2003) Molecular determinants of retinal ganglion cell development, survival, and regeneration. Prog Retin Eye Res 22:483–543

    Article  CAS  PubMed  Google Scholar 

  3. von Bartheld CS (1998) Neurotrophins in the developing and regenerating visual system. Histol Histopathol 13:437–459

    Google Scholar 

  4. Frade JM, Barde YA (1999) Genetic evidence for cell death mediated by nerve growth factor and the neurotrophin receptor p75 in the developing mouse retina and spinal cord. Development 126:683–690

    CAS  PubMed  Google Scholar 

  5. Harada C, Harada T, Nakamura K et al (2006) Effect of p75NTR on the regulation of naturally occurring cell death and retinal ganglion cell number in the mouse eye. Dev Biol 290:57–65

    Article  CAS  PubMed  Google Scholar 

  6. Perry VH, Henderson Z, Linden R (1983) Postnatal changes in retinal ganglion cell and optic axon populations in the pigmented rat. J Comp Neurol 219:356–368

    Article  CAS  PubMed  Google Scholar 

  7. Cui Q, Harvey AR (1995) At least two mechanisms are involved in the death of retinal ganglion cells following target ablation in neonatal rats. J Neurosci 15:8143–8155

    CAS  PubMed  Google Scholar 

  8. Ma YT, Hsieh T, Forbes ME et al (1998) BDNF injected into the superior colliculus reduces developmental retinal ganglion cell death. J Neurosci 18:2097–2107

    CAS  PubMed  Google Scholar 

  9. Cellerino A, Carroll P, Thoenen H et al (1997) Reduced size of retinal ganglion cell axons and hypomyelination in mice lacking brain-derived neurotrophic factor. Mol Cell Neurosci 9:397–408

    Article  CAS  PubMed  Google Scholar 

  10. Harada C, Harada T, Quah HM et al (2005) Role of neurotrophin-4/5 in neural cell death during retinal development and ischemic retinal injury in vivo. Invest Ophthalmol Vis Sci 46:669–673

    Article  PubMed  Google Scholar 

  11. Lee R, Kermani P, Teng KK et al (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948

    Article  CAS  PubMed  Google Scholar 

  12. Nakamura K, Namekata K, Harada C, Harada T (2007) Intracellular sortilin expression pattern regulates proNGF-induced naturally occurring cell death during development. Cell Death Differ 14:1552–1554

    Article  CAS  PubMed  Google Scholar 

  13. Nykjaer A, Lee R, Teng KK et al (2004) Sortilin is essential for proNGF-induced neuronal cell death. Nature 427:843–848

    Article  CAS  PubMed  Google Scholar 

  14. Teng HK, Teng KK, Lee R et al (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25:5455–5463

    Article  CAS  PubMed  Google Scholar 

  15. Lebrun-Julien F, Bertrand MJ, De Backer O et al (2010) ProNGF induces TNFα-dependent death of retinal ganglion cells through a p75NTR non-cell-autonomous signaling pathway. Proc Natl Acad Sci U S A 107:3817–3822. doi:10.1073/pnas.0909276107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Santos AM, López-Sánchez N, Martín-Oliva D et al (2012) Sortilin participates in light-dependent photoreceptor degeneration in vivo. PLoS One 7:e36243. doi:10.1371/journal.pone.0036243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bertrand MJ, Kenchappa RS, Andrieu D et al (2008) NRAGE, a p75NTR adaptor protein, is required for developmental apoptosis in vivo. Cell Death Differ 15:1921–1929. doi:10.1038/cdd.2008.127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Linggi MS, Burke TL, Williams BB et al (2005) Neurotrophin receptor interacting factor (NRIF) is an essential mediator of apoptotic signaling by the p75 neurotrophin receptor. J Biol Chem 280:13801–13808

    Article  CAS  PubMed  Google Scholar 

  19. Marler KJ, Poopalasundaram S, Broom ER et al (2010) Pro-neurotrophins secreted from retinal ganglion cell axons are necessary for ephrinA-p75NTR-mediated axon guidance. Neural Dev 5:30. doi:10.1186/1749-8104-5-30

    Article  PubMed Central  PubMed  Google Scholar 

  20. Anderson DR, Hendrickson A (1974) Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol 13:771–783

    CAS  PubMed  Google Scholar 

  21. Hayreh SS, March W, Anderson DR (1979) Pathogenesis of block of rapid orthograde axonal transport by elevated intraocular pressure. Exp Eye Res 28:515–523

    Article  CAS  PubMed  Google Scholar 

  22. Quigley H, Anderson DR (1976) The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol 15:606–616

    CAS  PubMed  Google Scholar 

  23. Salinas-Navarro M, Alarcón-Martínez L, Valiente-Soriano FJ et al (2010) Ocular hypertension impairs optic nerve axonal transport leading to progressive retinal ganglion cell degeneration. Exp Eye Res 90:168–183. doi:10.1016/j.exer.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  24. Knox DL, Eagle RC Jr, Green WR (2007) Optic nerve hydropic axonal degeneration and blocked retrograde axoplasmic transport: histopathologic features in human high-pressure secondary glaucoma. Arch Ophthalmol 125:347–353

    Article  PubMed  Google Scholar 

  25. Pease ME, McKinnon SJ, Quigley HA et al (2000) Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci 41:764–774

    CAS  PubMed  Google Scholar 

  26. Quigley HA, McKinnon SJ, Zack DJ et al (2000) Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci 41:3460–3466

    CAS  PubMed  Google Scholar 

  27. Takihara Y, Inatani M, Hayashi H et al (2011) Dynamic imaging of axonal transport in living retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci 52:3039–3045. doi:10.1167/iovs.10-6435

    Article  CAS  PubMed  Google Scholar 

  28. Chen H, Weber AJ (2001) BDNF enhances retinal ganglion cell survival in cats with optic nerve damage. Invest Ophthalmol Vis Sci 42:966–974

    CAS  PubMed  Google Scholar 

  29. Di Polo A, Aigner LJ, Dunn RJ et al (1998) Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Müller cells temporarily rescues injured retinal ganglion cells. Proc Natl Acad Sci U S A 95:3978–3983

    Article  PubMed Central  PubMed  Google Scholar 

  30. Mansour-Robaey S, Clarke DB, Wang YC et al (1994) Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci U S A 91:1632–1636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Peinado-Ramón P, Salvador M, Villegas-Pérez MP, Vidal-Sanz M (1996) Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study. Invest Ophthalmol Vis Sci 37:489–500

    PubMed  Google Scholar 

  32. Ko ML, Hu DN, Ritch R et al (2001) Patterns of retinal ganglion cell survival after brain-derived neurotrophic factor administration in hypertensive eyes of rats. Neurosci Lett 305:139–142

    Article  CAS  PubMed  Google Scholar 

  33. Martin KR, Quigley HA, Zack DJ et al (2003) Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci 44:4357–4365

    Article  PubMed  Google Scholar 

  34. Bai Y, Dergham P, Nedev H et al (2010) Chronic and acute models of retinal neurodegeneration TrkA activity are neuroprotective whereas p75NTR activity is neurotoxic through a paracrine mechanism. J Biol Chem 285:39392–39400. doi:10.1074/jbc.M110.147801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Shi Z, Birman E, Saragovi HU (2007) Neurotrophic rationale in glaucoma: a TrkA agonist, but not NGF or a p75 antagonist, protects retinal ganglion cells in vivo. Dev Neurobiol 67:884–894

    Article  CAS  PubMed  Google Scholar 

  36. Lebrun-Julien F, Morquette B, Douillette A et al (2009) Inhibition of p75NTR in glia potentiates TrkA-mediated survival of injured retinal ganglion cells. Mol Cell Neurosci 40:410–420. doi:10.1016/j.mcn.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  37. Colafrancesco V, Parisi V, Sposato V et al (2011) Ocular application of nerve growth factor protects degenerating retinal ganglion cells in a rat model of glaucoma. J Glaucoma 20:100–108. doi:10.1097/IJG.0b013e3181d787e5

    Article  PubMed  Google Scholar 

  38. Lambiase A, Aloe L, Centofanti M et al (2009) Experimental and clinical evidence of neuroprotection by nerve growth factor eye drops: Implications for glaucoma. Proc Natl Acad Sci U S A 106:13469–13474. doi:10.1073/pnas.0906678106

    Article  CAS  PubMed Central  Google Scholar 

  39. Cohen A, Bray GM, Aguayo AJ (1994) Neurotrophin-4/5 (NT-4/5) increases adult rat retinal ganglion cell survival and neurite outgrowth in vitro. J Neurobiol 25:953–959

    Article  CAS  PubMed  Google Scholar 

  40. Blum R, Konnerth A (2005) Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology 20:70–78

    Article  CAS  PubMed  Google Scholar 

  41. Namekata K, Harada C, Taya C et al (2010) Dock3 induces axonal outgrowth by stimulating membrane recruitment of the WAVE complex. Proc Natl Acad Sci U S A 107:7586–7591. doi:10.1073/pnas.0914514107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Nikoletopoulou V, Lickert H, Frade JM et al (2010) Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature 467:59–63. doi:10.1038/nature09336

    Article  CAS  PubMed  Google Scholar 

  43. Cheng L, Sapieha P, Kittlerová P et al (2002) TrkB gene transfer protects retinal ganglion cells from axotomy-induced death in vivo. J Neurosci 22:3977–3986

    CAS  PubMed  Google Scholar 

  44. Hu Y, Cho S, Goldberg JL (2010) Neurotrophic effect of a novel TrkB agonist on retinal ganglion cells. Invest Ophthalmol Vis Sci 51:1747–1754. doi:10.1167/iovs.09-4450

    Article  PubMed Central  PubMed  Google Scholar 

  45. Parrilla-Reverter G, Agudo M, Sobrado-Calvo P et al (2009) Effects of different neurotrophic factors on the survival of retinal ganglion cells after a complete intraorbital nerve crush injury: a quantitative in vivo study. Exp Eye Res 89:32–41. doi:10.1016/j.exer.2009.02.015

    Article  CAS  PubMed  Google Scholar 

  46. Grishanin RN, Yang H, Liu X et al (2008) Retinal TrkB receptors regulate neural development in the inner, but not outer, retina. Mol Cell Neurosci 38:431–443. doi:10.1016/j.mcn.2008.04.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Harada T, Harada C, Nakayama N et al (2000) Modification of glial-neuronal cell interactions prevents photoreceptor apoptosis during light-induced retinal degeneration. Neuron 26:533–541

    Article  CAS  PubMed  Google Scholar 

  48. Wahlin KJ, Campochiaro PA, Zack DJ, Adler R (2000) Neurotrophic factors cause activation of intracellular signaling pathways in Müller cells and other cells of the inner retina, but not photoreceptors. Invest Ophthalmol Vis Sci 41:927–936

    CAS  PubMed  Google Scholar 

  49. Harada T, Harada C, Kohsaka S et al (2002) Microglia-Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J Neurosci 22:9228–9236

    CAS  PubMed  Google Scholar 

  50. Harada C, Guo X, Namekata K et al (2011) Glia- and neuron-specific functions of TrkB signalling during retinal degeneration and regeneration. Nat Commun 2:189. doi:10.1038/ncomms1190

    Article  PubMed Central  PubMed  Google Scholar 

  51. Lamba D, Karl M, Reh T (2008) Neural regeneration and cell replacement: a view from the eye. Cell Stem Cell 2:538–549. doi:10.1016/j.stem.2008.05.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. LaVail MM, Unoki K, Yasumura D et al (1992) Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light. Proc Natl Acad Sci U S A 89:11249–11253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Fischer D, Leibinger M (2012) Promoting optic nerve regeneration. Prog Retin Eye Res 31:688–701. doi:10.1016/j.preteyeres.2012.06.005

    Article  PubMed  Google Scholar 

  54. Heinrich PC, Behrmann I, Haan S et al (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374:1–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Ernst M, Jenkins BJ (2004) Acquiring signalling specificity from the cytokine receptor gp130. Trends Genet 20:23–32

    Article  CAS  PubMed  Google Scholar 

  56. Leaver SG, Cui Q, Plant GW et al (2006) AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells. Gene Ther 13:1328–1341

    Article  CAS  PubMed  Google Scholar 

  57. Meyer-Franke A, Kaplan MR, Pfrieger FW, Barres BA (1995) Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15:805–819

    Article  CAS  PubMed  Google Scholar 

  58. van Adel BA, Kostic C, Déglon N et al (2003) Delivery of ciliary neurotrophic factor via lentiviral-mediated transfer protects axotomized retinal ganglion cells for an extended period of time. Hum Gene Ther 14:103–115

    Article  PubMed  Google Scholar 

  59. Ji J-T, Elyaman W, Yip HK et al (2004) CNTF promotes survival of retinal ganglion cells after induction of ocular hypertension in rats: the possible involvement of STAT3 pathway. Eur J Neurosci 19:265–272

    Article  PubMed  Google Scholar 

  60. Pease ME, Zack DJ, Berlinicke C et al (2009) Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest Ophthalmol Vis Sci 50:2194–2200. doi:10.1167/iovs.08-3013

    Article  PubMed Central  PubMed  Google Scholar 

  61. Sieving PA, Caruso RC, Tao W et al (2006) Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci U S A 103:3896–3901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Talcott KE, Ratnam K, Sundquist SM et al (2011) Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Invest Ophthalmol Vis Sci 52:2219–2226. doi:10.1167/iovs.10-6479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Tao W (2006) Application of encapsulated cell technology for retinal degenerative diseases. Expert Opin Biol Ther 6:717–726

    Article  CAS  PubMed  Google Scholar 

  64. Cui Q, Lu Q, So KF, Yip HK (1999) CNTF, not other trophic factors, promotes axonal regeneration of axotomized retinal ganglion cells in adult hamsters. Invest Ophthalmol Vis Sci 40:760–766

    CAS  PubMed  Google Scholar 

  65. Watanabe M, Tokita Y, Kato M, Fukuda Y (2003) Intravitreal injections of neurotrophic factors and forskolin enhance survival and axonal regeneration of axotomized beta ganglion cells in cat retina. Neuroscience 116:733–742

    Article  CAS  PubMed  Google Scholar 

  66. Babon JJ, Nicola NA (2012) The biology and mechanism of action of suppressor of cytokine signaling 3. Growth Factors 30:207–219. doi:10.3109/08977194.2012.687375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Hellström M, Muhling J, Ehlert EM et al (2011) Negative impact of rAAV2 mediated expression of SOCS3 on the regeneration of adult retinal ganglion cell axons. Mol Cell Neurosci 46:507–515. doi:10.1016/j.mcn.2010.12.003

    Article  PubMed  Google Scholar 

  68. Smith PD, Sun F, Park KK et al (2009) SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 64:617–623. doi:10.1016/j.neuron.2009.11.021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Sun F, Park KK, Belin S et al (2011) Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 480:372–375. doi:10.1038/nature10594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Baloh RH, Enomoto H, Johnson EM Jr, Milbrandt J (2000) The GDNF family ligands and receptors – implications for neural development. Curr Opin Neurobiol 10:103–110

    Article  CAS  PubMed  Google Scholar 

  71. Klöcker N, Bräunling F, Isenmann S, Bähr M (1997) In vivo neurotrophic effects of GDNF on axotomized retinal ganglion cells. Neuroreport 8:3439–3442

    Article  PubMed  Google Scholar 

  72. Koeberle PD, Ball AK (1998) Effects of GDNF on retinal ganglion cell survival following axotomy. Vision Res 38:1505–1515

    Article  CAS  PubMed  Google Scholar 

  73. Yan Q, Wang J, Matheson CR, Urich JL (1999) Glial cell line-derived neurotrophic factor (GDNF) promotes the survival of axotomized retinal ganglion cells in adult rats: comparison to and combination with brain-derived neurotrophic factor (BDNF). J Neurobiol 38:382–390

    Article  CAS  PubMed  Google Scholar 

  74. Kyhn MV, Klassen H, Johansson UE et al (2009) Delayed administration of glial cell line-derived neurotrophic factor (GDNF) protects retinal ganglion cells in a pig model of acute retinal ischemia. Exp Eye Res 89:1012–1020. doi:10.1016/j.exer.2009.08.014

    Article  CAS  PubMed  Google Scholar 

  75. Checa-Casalengua P, Jiang C, Bravo-Osuna I et al (2011) Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure. J Control Release 156:92–100. doi:10.1016/j.jconrel.2011.06.023

    Article  CAS  PubMed  Google Scholar 

  76. Nakatani M, Shinohara Y, Takii M et al (2011) Periocular injection of in situ hydrogels containing Leu-Ile, an inducer for neurotrophic factors, promotes retinal ganglion cell survival after optic nerve injury. Exp Eye Res 93:873–879. doi:10.1016/j.exer.2011.09.024

    Article  CAS  PubMed  Google Scholar 

  77. Harada C, Harada T, Quah HM et al (2003) Potential role of glial cell line-derived neurotrophic factor receptors in Müller glial cells during light-induced retinal degeneration. Neuroscience 122:229–235

    Article  CAS  PubMed  Google Scholar 

  78. Koeberle PD, Bähr M (2008) The upregulation of GLAST-1 is an indirect antiapoptotic mechanism of GDNF and neurturin in the adult CNS. Cell Death Differ 15:471–483

    Article  CAS  PubMed  Google Scholar 

  79. Harada T, Harada C, Nakamura K et al (2007) The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. J Clin Invest 117:1763–1770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Gherghel D, Griffiths HR, Hilton EJ et al (2005) Systemic reduction in glutathione levels occurs in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 46:877–883

    Article  PubMed  Google Scholar 

  81. Naskar R, Vorwerk CK, Dreyer EB (2000) Concurrent downregulation of a glutamate transporter and receptor in glaucoma. Invest Ophthalmol Vis Sci 41:1940–1944

    CAS  PubMed  Google Scholar 

  82. Harada C, Namekata K, Guo X et al (2010) ASK1 deficiency attenuates neural cell death in GLAST-deficient mice, a model of normal tension glaucoma. Cell Death Differ 17:1751–1759. doi:10.1038/cdd.2010.62

    Article  CAS  PubMed  Google Scholar 

  83. Nakazawa T, Nakazawa C, Matsubara A et al (2006) Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J Neurosci 26:12633–12641

    Article  CAS  PubMed  Google Scholar 

  84. Osborne NN (2008) Pathogenesis of ganglion ‘cell death’ in glaucoma and neuroprotection: focus on ganglion cell axonal mitochondria. Prog Brain Res 173:339–352. doi:10.1016/S0079-6123(08)01124-2

    Article  CAS  PubMed  Google Scholar 

  85. Toda N, Nakanishi-Toda M (2007) Nitric oxide: ocular blood flow, glaucoma, and diabetic retinopathy. Prog Retin Eye Res 26:205–238

    Article  CAS  PubMed  Google Scholar 

  86. Bringmann A, Iandiev I, Pannicke T et al (2009) Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 28:423–451. doi:10.1016/j.preteyeres.2009.07.001

    Article  CAS  PubMed  Google Scholar 

  87. Guo X, Harada C, Namekata K et al (2010) Regulation of the severity of neuroinflammation and demyelination by TLR-ASK1-p38 pathway. EMBO Mol Med 2:504–515. doi:10.1002/emmm.201000103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Katome T, Namekata K, Guo X et al (2013) Inhibition of ASK1-p38 pathway prevents neural cell death following optic nerve injury. Cell Death Differ 20:270–280. doi:10.1038/cdd.2012.122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Kolomeyer AM, Zarbin MA (2014) Trophic factors in the pathogenesis and therapy for retinal degenerative diseases. Surv Ophthalmol 59(2):134–165. doi:10.1016/j.survophthal.2013.09.004

    Article  PubMed  Google Scholar 

  90. Miyazaki M, Ikeda Y, Yonemitsu Y et al (2011) Pigment epithelium-derived factor gene therapy targeting retinal ganglion cell injuries: neuroprotection against loss of function in two animal models. Hum Gene Ther 22:559–565. doi:10.1089/hum.2010.132

    Article  CAS  PubMed  Google Scholar 

  91. Tombran-Tink J (2010) PEDF in angiogenic eye diseases. Curr Mol Med 10:267–278

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (CH) and the Funding Program for Next Generation World-Leading Researchers (NEXT Program) (TH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Harada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Harada, C., Harada, T. (2014). Neurotrophic Factors. In: Nakazawa, T., Kitaoka, Y., Harada, T. (eds) Neuroprotection and Neuroregeneration for Retinal Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54965-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54965-9_7

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54964-2

  • Online ISBN: 978-4-431-54965-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics