Skip to main content

Introduction

  • Chapter
  • First Online:
Space-Time Foliation in Quantum Gravity

Part of the book series: Springer Theses ((Springer Theses))

  • 653 Accesses

Abstract

The aim of this chapter is to provide all basic information necessary to read the thesis and to clarify our stance on discussing quantum gravity. Through Sect. 1.1, one can understand why we think that an object called space-time foliation is useful in quantum gravity. The book treats two theories of gravity with the space-time foliation: Causal Dynamical Triangulations (CDT) and n-DBI gravity; the following sections are devoted to explaining their fundamental ideas and to supplements for understanding the theoretical frameworks. Namely, since CDT is a lattice formulation of quantum gravity, in Sect. we show how to put gravity on a lattice with and without the space-time foliation; Sect. 1.3 leads readers to n-DBI gravity starting with the idea of the 3 + 1 decomposition which is a standard way to investigate the gravitational physics with the space-time filiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As for the notation of constraints, see Sect. 1.3.

  2. 2.

    See, for instance, [9].

  3. 3.

    There is a nice review of CDT [9]; in this book, we follow the notation appeared there.

  4. 4.

    In \(2\) dimensions the difference of \(\alpha \) can be absorbed into the redefinition of the cosmological constant, so that one can set \(\alpha =1\) without loss of generality.

  5. 5.

    For a good review of the Liouville field theory, see [33].

  6. 6.

    The subscripts of constraints may seem to be weird, say why does not \(\varPhi _{3}\) exist? This convention has been made for the later convenience.

  7. 7.

    A well-known example is a chiral boson.

  8. 8.

    The first two issues are apparently contradictory: if the lapse must collapse everywhere, there would be no way to develop an exponentially growing mode involving the lapse. We will, however, discuss the instabilities of the \(n\)-DBI model which evades the first issue.

  9. 9.

    We thank Soo-Jong Rey and Takao Suyama for suggesting this formulation.

References

  1. Teitelboim, C. (1983). Causality versus gauge invariance in quantum gravity and supergravity. Physical Review Letters, 50, 705.

    Article  ADS  MathSciNet  Google Scholar 

  2. Wheeler, J. A. (1970). In R. Gilbert, & R. Newton (Eds.) Analytical methods in mathematical physics. New York: Gordon and Breach.

    Google Scholar 

  3. Ambjorn, J., & Loll, R. (1998). Non-perturbative Lorentzian quantum gravity, causality and topology change. Nuclear Physics B, 536, 407. [hep-th/9805108].

    Article  ADS  MathSciNet  Google Scholar 

  4. Ambjorn, J., Gorlich, A., Jurkiewicz, J., & Loll, R. (2008). Planckian birth of the quantum de sitter universe. Physical Review Letters, 100, 091304. arXiv:0712.2485 [hep-th].

  5. Jacobson, T. Einstein-aether gravity: A Status report, PoS QG -PH (2007) 020. arXiv:0801.1547 [gr-qc].

  6. Herdeiro, C., & Hirano, S. (2012). Scale invariance and a gravitational model with non-eternal inflation. Journal of Cosmology and Astroparticle Physics, 1205, 031. arXiv:1109.1468 [hep-th].

  7. Herdeiro, C., Hirano, S., & Sato, Y. (2011). n-DBI gravity. Physical Review D, 84, 124048. arXiv:1110.0832 [gr-qc].

  8. Coelho, F. S., Herdeiro, C., Hirano, S., & Sato, Y. (2012). On the scalar graviton in n-DBI gravity. Physics Letters B, 86, 064009. arXiv:1205.6850 [hep-th].

  9. Ambjorn, J., Goerlich, A., Jurkiewicz, J., & Loll, R. (2012). Nonperturbative Quantum Gravity. Physics Reports, 519, 127. arXiv:1203.3591 [hep-th].

  10. Regge, T. (1961). General relativity without coordinates. Nuovo Cimento Series, 19, 558.

    Article  MathSciNet  Google Scholar 

  11. Weyl, H. (1922). Space, time, matter. London: Methuen.

    MATH  Google Scholar 

  12. Codello, A., Percacci, R., & Rahmede, C. (2009). Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation. Annals of Physics, 324, 414. arXiv:0805.2909 [hep-th].

  13. Reuter, M., & Saueressig, F. (2007). Functional Renormalization Group Equations, Asymptotic Safety, and Quantum Einstein Gravity. arXiv:0708.1317 [hep-th] (Based on lectures given by M.R. at the “First Quantum Geometry and Quantum Gravity School”, Zakopane, Poland, March 2007, and the “Summer School on Geometric and Topological Methods for Quantum Field Theory”, Villa de Leyva, Colombia, July 2007, and by F.S. at NIKHEF, Amsterdam, The Netherlands, June 2006).

  14. Niedermaier, M., & Reuter, M. (2006). The asymptotic safety scenario in quantum gravity. Living Reviews in Relativity, 9, 5.

    Article  ADS  Google Scholar 

  15. Hamber, H. W., & Williams, R. M. (2005). Nonlocal effective gravitational field equations and the running of Newton’s G. Physical Review D, 72, 044026. [hep-th/0507017].

    Article  ADS  MathSciNet  Google Scholar 

  16. Christiansen, N., Litim, D. F., Pawlowski, J. M., & Rodigast, A. (2014). Fixed points and infrared completion of quantum gravity. Physics Letters B728, 114. arXiv:1209.4038 [hep-th].

  17. Weinberg, S. (1979). Ultraviolet divergences in quantum theories of gravitation. In S. W. Hawking, W. Israel (Eds.) General relativity: Einstein centenary survey  (pp. 790–831) Cambridge: Cambridge University Press.

    Google Scholar 

  18. Reuter, M. (1998). Nonperturbative evolution equation for quantum gravity. Physical Review D, 57, 971. [hep-th/9605030].

    Article  ADS  MathSciNet  Google Scholar 

  19. Ponzano, G., & Regge, T. (1968). In F. Bloch (Ed.) Spectroscopic and group theoretical methods in physics Amsterdam: North-Holland.

    Google Scholar 

  20. Turaev, V. G., & Viro, O. Y. (1992). State sum invariants of 3 manifolds and quantum 6j symbols. Topology, 31, 865.

    Article  MATH  MathSciNet  Google Scholar 

  21. Ambjorn, J., Durhuus, B., & Frohlich, J. (1985). Diseases of triangulated random surface models, and possible cures. Nuclear Physics B, 257, 433.

    Article  ADS  MathSciNet  Google Scholar 

  22. Ambjorn, J., Durhuus, B., Frohlich, J., & Orland, P. (1986). The appearance of critical dimensions in regulated string theories. Nuclear Physics B, 270, 457.

    Article  ADS  MathSciNet  Google Scholar 

  23. David, F. (1985). Planar diagrams, two-dimensional lattice gravity and surface models. Nuclear Physics B, 257, 45.

    Article  ADS  MathSciNet  Google Scholar 

  24. Billoire, A., & David, F. (1986). Microcanonical simulations of randomly triangulated planar random surfaces. Physics Letters B, 168, 279.

    Article  ADS  Google Scholar 

  25. Kazakov, V. A., Migdal, A. A., & Kostov, I. K. (1985). Critical properties of randomly triangulated planar random surfaces. Physics Letters B, 157, 295.

    Article  ADS  MathSciNet  Google Scholar 

  26. Boulatov, D. V., Kazakov, V. A., Kostov, I. K., & Migdal, A. A. (1986). Analytical and numerical study of the model of dynamically triangulated random surfaces. Nuclear Physics B, 275, 641.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Ambjorn, J., Jurkiewicz, J., & Loll, R. (2001). Dynamically triangulating Lorentzian quantum gravity. Nuclear Physics B, 610, 347. [hep-th/0105267].

    Article  ADS  MathSciNet  Google Scholar 

  28. Ambjorn, J., Loll, R., Watabiki, Y., Westra, W., & Zohren, S. (2008). Topology change in causal quantum gravity. arXiv:0802.0896 [hep-th] (proceedings of the workshop JGRG 17 (Nagoya, Japan, December 2007)).

  29. Ambjorn, J., Gorlich, A., Jurkiewicz, J. & Loll, R. (2010). CDT—an entropic theory of quantum gravity. arXiv:1007.2560 [hep-th] (Lectures presented at the “School on Non-Perturbative Methods in Quantum Field Theory” and the “Workshop on Continuum and Lattice Approaches to Quantum Gravity”, Sussex, September 15th–19th 2008. To appear as a contribution to a Springer Lecture Notes in Physics book).

  30. Ambjorn, J., Chekhov, L., Kristjansen, C. F., & Makeenko, Y. (1993). Matrix model calculations beyond the spherical limit. Nuclear Physics B, 404, 127 [Erratum-ibid. B 449 (1995) 681] [hep-th/9302014].

    Google Scholar 

  31. Ambjorn, J., Loll, R., Watabiki, Y., Westra, W., & Zohren, S. (2008). A new continuum limit of matrix models. Physics Letters B, 670, 224. arXiv:0810.2408 [hep-th].

  32. Polyakov, A. M. (1981). Quantum geometry of bosonic strings. Physics Letters B, 103, 207.

    Article  ADS  MathSciNet  Google Scholar 

  33. Nakayama, Y. (2004). Liouville field theory: A decade after the revolution. International Journal of Modern Physics A, 19, 2771. [hep-th/0402009].

    Article  ADS  MATH  Google Scholar 

  34. Ambjorn, J., Loll, R., Watabiki, Y., Westra, W., & Zohren, S. (2008). A matrix model for 2D quantum gravity defined by causal dynamical triangulations. Physics Letters B, 665, 252. arXiv:0804.0252 [hep-th].

  35. Arnowitt, R. L., Deser, S., & Misner, C. W. (1960). Canonical variables for general relativity. Physical Review, 117, 1595.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Arnowitt, R. L., Deser, S., & Misner, C. W. (2008). The dynamics of general relativity. General Relativity and Gravitation, 40, 1997–2027. arXiv:gr-qc/0405109.

  37. Khoury, J., Miller, G. E. J. & Tolley, A. J. (2012). Spatially covariant theories of a transverse, traceless graviton, part I: Formalism. Physical Review D, 85, 084002. arXiv:1108.1397 [hep-th].

  38. Bojowald, M. (2010). Canonical gravity and applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  39. Horava, P. (2009). Quantum gravity at a Lifshitz point. Physical Review D, 79, 084008. arXiv:0901.3775 [hep-th].

  40. Henneaux, M., Kleinschmidt, A., & Gomez, G. L. (2010). A dynamical inconsistency of Horava gravity. Physical Review D, 81, 064002. arXiv:0912.0399 [hep-th].

  41. Blas, D., Pujolas, O., & Sibiryakov, S. (2009). On the extra mode and inconsistency of Horava gravity. Journal of High Energy Physics, 0910, 029. arXiv:0906.3046 [hep-th].

  42. Charmousis, C., Niz, G., Padilla, A., & Saffin, P. M. (2009). Strong coupling in Horava gravity. Journal of High Energy Physics, 0908, 070. arXiv:0905.2579 [hep-th].

  43. Blas, D., Pujolas, O., & Sibiryakov, S. (2010). Consistent extension of Horava gravity. Physical Review Letters, 104, 181302. arXiv:0909.3525 [hep-th].

  44. Lemaître, G. (1927). Un Univers homogeéne de masse constante et de rayon croissant rendant compte de la vitesse radiale des nbuleuses extra-galactiques. Annales Societatis Science Bruxelles A, 47, 49.

    ADS  Google Scholar 

  45. Hubble, E. (1929). A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the National Academy of Sciences, 15, 168.

    Article  ADS  MATH  Google Scholar 

  46. Guth, A. H. (1981). The inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D, 23, 347–356.

    Article  ADS  Google Scholar 

  47. Linde, A. D. (1982). A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Physics Letters B, 108, 389.

    Article  ADS  MathSciNet  Google Scholar 

  48. Linde, A. D. (1983). Chaotic inflation. Physics Letters B, 129, 177.

    Article  ADS  MathSciNet  Google Scholar 

  49. Albrecht, A., & Steinhardt, P. J. (1982). Cosmology for grand unified theories with radiatively induced symmetry breaking. Physical Review Letters, 48, 1220.

    Article  ADS  Google Scholar 

  50. Starobinsky, A. A. (1980). A new type of isotropic cosmological models without singularity. Physics Letters B, 91, 99–102.

    Article  ADS  Google Scholar 

  51. Starobinsky, A. A. (1979). Relict gravitation radiation spectrum and initial state of the universe. JETP Letters, 30, 682–685. (In Russian).

    ADS  Google Scholar 

  52. Sato, K. (1981). First order phase transition of a vacuum and expansion of the universe. Monthly Notices of the Royal Astronomical Society, 195, 467.

    ADS  Google Scholar 

  53. Polyakov, A. M. (2006). Beyond space-time [hep-th/0602011] (based on the remarks made at the 23 Solvay Conference).

    Google Scholar 

  54. Maldacena, J. M. (1998). The Large N limit of superconformal field theories and supergravity. Advanced Theories in Mathematical Physics, 2, 231. [hep-th/9711200].

    ADS  MATH  MathSciNet  Google Scholar 

  55. Gibbons, G. W., & Hawking, S. W. (1977). Action integrals and partition functions in quantum gravity. Physical Review D, 15, 2752.

    Article  ADS  MathSciNet  Google Scholar 

  56. York, J. W. (1972). Role of conformal three geometry in the dynamics of gravitation. Physical Review Letters, 28, 1082.

    Article  ADS  Google Scholar 

  57. Delsate, T., & Steinhoff, J. (2012). New insights on the matter-gravity coupling paradigm. Physical Review Letters, 109, 021101. arXiv:1201.4989 [gr-qc].

  58. Arkani-Hamed, N., Cheng, H.-C., Luty, M. A., & Mukohyama, S. (2004). Ghost condensation and a consistent infrared modification of gravity. Journal of High Energy Physics, 0405, 074. [hep-th/0312099].

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Sato .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Sato, Y. (2014). Introduction. In: Space-Time Foliation in Quantum Gravity. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54947-5_1

Download citation

Publish with us

Policies and ethics