Skip to main content

Poly-Bernoulli Numbers

  • Chapter
  • First Online:
Bernoulli Numbers and Zeta Functions

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 3375 Accesses

Abstract

In this chapter, we define and study a generalization of Bernoulli numbers referred to as poly-Bernoulli numbers, which is a different generalization than the generalized Bernoulli numbers introduced in Chap. 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    John Wilson (born on August 6, 1741 in Applethwaite, England—died on October 18, 1793 in Kendal, England).

  2. 2.

    Harry Schultz Vandiver (born on October 21, 1882 in Philadelphia, USA, died on January 9, 1973 in Austin, USA).

  3. 3.

    The following proof, which greatly simplifies the original proof in [10], is due to Hiroyuki Ochiai . The authors would like to thank him for providing this simple proof.

References

  1. Arakawa, T., Kaneko, M.: Multiple zeta values, poly-Bernoulli numbers, and related zeta functions. Nagoya Math. J. 153, 189–209 (1999)

    MATH  MathSciNet  Google Scholar 

  2. Arakawa, T., Kaneko, M.: On poly-Bernoulli numbers. Comment. Math. Univ. St. Pauli 48, 159–167 (1999)

    MATH  MathSciNet  Google Scholar 

  3. Brewbaker, C.: Lonesum (0, 1)-matrices and poly-Bernoulli numbers of negative index. Master’s thesis, Iowa State University (2005)

    Google Scholar 

  4. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory, 2nd edn. Graduate Texts in Mathematics, vol. 84. Springer (1990)

    Google Scholar 

  5. Kaneko, M.: Poly-Bernoulli numbers. J. Th. Nombre Bordeaux 9, 199–206 (1997)

    Google Scholar 

  6. Kaneko, M.: Multiple zeta values. Sugaku Expositions 18(2), 221–232 (2005)

    MATH  MathSciNet  Google Scholar 

  7. Launois, S.: Combinatorics of \(\mathcal{H}\)-primes in quantum matrices. J. Algebra 309(1), 139–167 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Nörlund, N.E.: Vorlesungen über Differenzenrechnung. Chelsea Publication, New York (1954). (First edition, Springer, Berlin, 1924)

    Google Scholar 

  9. Vandiver, H.S.: On developments in an arithmetic theory of the Bernoulli and allied numbers. Scripta Math. 25, 273–303 (1961)

    MATH  MathSciNet  Google Scholar 

  10. Waldschmidt, M.: Valeurs zêta multiples. Une introduction. Colloque International de Théorie des Nombres (Talence, 1999). J. Théor. Nombres Bordeaux 12(2), 581–595 (2000)

    Google Scholar 

  11. Zagier, D.: Values of zeta functions and their applications, in ECM volume. Progress Math. 120, 497–512 (1994)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Ibukiyama, T., Kaneko, M. (2014). Poly-Bernoulli Numbers. In: Bernoulli Numbers and Zeta Functions. Springer Monographs in Mathematics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54919-2_14

Download citation

Publish with us

Policies and ethics