Skip to main content

Implicit Methods for Simulating Low Reynolds Number Free Surface Flows: Improvements on MAC-Type Methods

  • Conference paper
  • First Online:
The Impact of Applications on Mathematics

Part of the book series: Mathematics for Industry ((MFI,volume 1))

Abstract

This paper is concerned with describing the main improvements introduced to the MAC (Marker-And-Cell) method for the numerical simulation of low Reynolds number free surface flows, namely: a stable implicit treatment of the pressure boundary condition for projection methods, a semi-implicit method based on the Crank–Nicolson (C–N) discretization of the momentum equations, a more accurate method for moving the massless particles representing the free surface and a viscoelastic model based on the Pom-Pom constitutive law, are discussed. Low Reynolds number free surface flows appear in a number of important industrial processes in the oil, food, cosmetic and medical industries and their simulation present a challenge for explicit MAC-type methods due to their parabolic time step constraint. The simulation of moving boundary problems presents a number of difficulties for a numerical method. For the semi-implicit (C–N) MAC method the main difficulty appears in applying the projection method to uncouple velocity and pressure, this is in addition to other difficulties of correctly imposing the boundary conditions on the free surface and the free surface representation itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonietti, P.F., Fadel, N.A., Verani, M.: Modelling and numerical simulation of the polymeric extrusion process in textile products. Commun. Appl. Ind. Math. 1, 1–13 (2010)

    MathSciNet  Google Scholar 

  2. Baltussen, M.G.H.M., Verbeeten, W.M.H., Bogaerds, A.C.B., Hulsen, M.A., Peters, G.W.M.: Anisotropy parameter restrictions for the eXtended Pom-Pom model. J. Non-Newton. Fluid 165, 1047–1054 (2010)

    Article  MATH  Google Scholar 

  3. Bonito, A., Picasso, M., Laso, M.: Numerical simulation of 3D viscoelastic flows with free surfaces. J. Comput. Phy. 215(2), 691–716 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bonito, A., Clément, P., Picasso, M.: Viscoelastic flows with complex free surfaces: numerical analysis and simulation. Glowinski, R., Xu, J. (eds.) Handbook of Numerical Analysis, Numerical Methods for Non-Newtonian Fluids vol. 16, pp. 305–369 (2011)

    Google Scholar 

  5. Brown, D.L., Cortez, R., Minion, M.L.: Accurate projection methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 168, 464–499 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Caboussat, A.: Numerical simulation of two-phase free surface flows. Arch. Comput. Meth. Eng. 12, 165–224 (2005)

    Article  MATH  Google Scholar 

  7. Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics, 3rd edn. Springer, New York (2000)

    Google Scholar 

  8. Ciarlet, P.G., Glowinsk, R., Lions, J.L.: Numerical methods for non-newtonian fluids. Handbook of Numerical Analysis, vol. 16, North-Holland, Amsterdam (2011)

    Google Scholar 

  9. Crochet, M.J., Keunings, R.: Finite element analysis of die-swell of a highly elastic fluids. J. Non-Newton. Fluid 10, 339–356 (1982)

    Article  MATH  Google Scholar 

  10. Cruickshank, J.O.: Low-Reynolds-number instabilities in stagnating jet flows. J. Fluid Mech. 193, 111–127 (1988)

    Article  Google Scholar 

  11. Figueiredo, R.A., Oishi, C.M., Cuminato, J.A., Alves, M.A.: Three-dimensional transient complex free surface flows: numerical simulation of XPP fluid. J. Non-Newton. Fluid 195, 88–98 (2013)

    Article  Google Scholar 

  12. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)

    Article  MATH  Google Scholar 

  13. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308–323 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Martins, F.P., Oishi, C.M., Sousa, F.S., Cuminato, J.A.: Numerical assessment of mass conservation on a MAC-type method for viscoelastic free surface flows. In: 6th European Congress on Computational Methods in Applied Sciences and Egineering (ECCOMAS 2012), vol. 1, pp. 6545–6562 (2012)

    Google Scholar 

  15. McKee, S., Tomé, M.F., Cuminato, J.A., Castelo, A., Ferreira, V.G.: Recent advances in the marker-and-cell method. Arch. Comput. Meth. Eng. 11, 107–142 (2004)

    Google Scholar 

  16. McKee, S., Tomé, M.F., Ferreira, V.G., Cuminato, J.A., Castelo, A., Sousa, F.S., Mangiavacchi, N.: MAC Method. Comput. Fluids 37, 907–930 (2008)

    Google Scholar 

  17. Oishi, C.M., Cuminato, J.A., Ferreira, V.G., Tomé, M.F., Castelo, A., Mangiavacchi, N., McKee, S.: A stable semi-implicit method for free surface flows. J. Appl. Mech. 73, 940–947 (2006)

    Article  MATH  Google Scholar 

  18. Oishi, C.M., Cuminato, J.A., Yuan, J.Y., McKee, S.: Stability of numerical schemes on staggered grids. Numer. Linear Algebra Appl. 15, 945–967 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Oishi, C.M., Martins, F.P., Tomé, M.F., Alves, M.A.: Numerical simulation of drop impact and jet buckling problems using the eXtended Pom-Pom model. J. Non-Newton. Fluid 169, 91–103 (2012)

    Article  Google Scholar 

  20. Oishi, C.M., Martins, F.P., Tomé, M.F., Cuminato, J.A., McKee, S.: Numerical solution of the eXtended Pom-Pom model for viscoelastic free surface flows. J. Non-Newton. Fluid 166, 165–179 (2011)

    Article  MATH  Google Scholar 

  21. Oishi, C.M., Tomé, M.F., Cuminato, J.A., McKee, S.: An implicit technique for solving 3d low Reynolds number moving free surface flows. J. Comput. Phys. 227, 7446–7468 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Owens, R.G., Phillips, T.N.: Computational Rheology. Imperial College Press, London (2002)

    Book  MATH  Google Scholar 

  23. Quarteroni, A., Saleri, A., Veneziani, A.: Factorization methods for the numerical approximation of Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 188, 505–526 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Roberts, S.A., Rao, R.R.: Numerical simulations of mounding and submerging flows of shear-thinning jets impinging in a container. J. Non-Newton. Fluid 166, 1100–1115 (2011)

    Article  MATH  Google Scholar 

  25. Russo, G., Phillips, T.N.: Numerical prediction of extrudate swell of branched polymer melts. Rheol. Acta. 49, 657–676 (2010)

    Article  Google Scholar 

  26. Tanner, R.I.: A theory of die-swell revisited. J. Non-Newton. Fluid 129, 85–87 (2005)

    Article  MATH  Google Scholar 

  27. Tomé, M.F., Castelo, A., Afonso, A.M., Alves, M.A., Pinho, F.T.: Application of the log-conformation tensor to three-dimensional time-dependent free surface flows. J. Non-Newton. Fluid 175–176, 44–54 (2012)

    Article  Google Scholar 

  28. Tomé, M.F., Castelo, A., Ferreira, V.G., McKee, S.: A finite difference technique for solving the Oldroyd-B model for 3D-unsteady free surface flows. J. Non-Newton. Fluid 154, 159–192 (2008)

    Article  Google Scholar 

  29. Tomé, M.F., Castelo, A., Nóbrega, J.M., Carneiro, O.S., Paulo, G.S., Pereira, F.T.: Numerical and experimental investigations of three-dimensional container filling with Newtonian viscous Fluids. Comput. Fluids 90, 172–185 (2014)

    Article  Google Scholar 

  30. Ville, L., Silva, L., Coupez, T.: Convected level set method for the numerical simulation of fluid buckling. Internat. J. Numer. Methods Fluids 66, 324–344 (2011)

    Article  MATH  Google Scholar 

  31. Xu, X., Ouyang, J., Yang, B., Liu, Z.: SPH simulations of three-dimensional non-Newtonian free surface flows. Comput. Methods Appl. Mech. Eng. 256, 101–116 (2013)

    Article  MathSciNet  Google Scholar 

  32. Yang, B., Ouyang, J., Wang, F.: Simulation of stress distribution near weld line in the viscoelastic melt mold filling process. J. Appl. Math. (2013)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of FAPESP (projects nos. 2013/07375-0, 2011/09194-7, 2009/15892-9) and CNPq (projects nos. 305447/2010-6 , 473589/2013-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Cuminato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this paper

Cite this paper

Cuminato, J.A., Oishi, C.M., Figueiredo, R.A. (2014). Implicit Methods for Simulating Low Reynolds Number Free Surface Flows: Improvements on MAC-Type Methods. In: Wakayama, M., et al. The Impact of Applications on Mathematics. Mathematics for Industry, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54907-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54907-9_9

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54906-2

  • Online ISBN: 978-4-431-54907-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics