Advertisement

Interactions in Mixed Lipid Bilayers

  • Sohei Tasaki
Conference paper
Part of the Mathematics for Industry book series (MFI, volume 1)

Abstract

Fundamental interactions in mixed lipid bilayers are reviewed and discussed to clarify their influences on lipid microdomain formation. First, we describe a phase-separating elastic system of mixed lipid bilayers containing elastic and trans-bilayer interactions. The model can reflect characteristic properties of the bilayer, such as macroscopic elastic moduli and microscopic properties of the constituent molecules, so that we are able to analyze how the composition of the bilayer affects on the lateral morphology. Furthermore, it enables us to examine the interacting effects one by one. It is shown that the elastic interaction can stabilize intramembrane subdomain structures by secondary bifurcations of the steady states, even in simple situations with homogeneous and isotropic rigidity. On the other hand, the trans-bilayer coupling interaction may regulate the symmetry of the two leaflets of the bilayer. Indeed, simulations show us different mechanisms of synchronized lipid sorting and deformation of the bilayer. The fundamental interactions, together with further protein–protein and protein–lipid interactions, may be utilized depending on the situation to organize appropriate morphological structures.

Keywords

Lipid bilayer Phase separation Elasticity Pattern formation Stability Synchronization Bifurcation 

References

  1. 1.
    Allender, D.W., Schick, M.: Phase separation in bilayer lipid membranes: effects on the inner leaf due to coupling to the outer leaf. Biophys. J. 91, 2928–2935 (2006)CrossRefGoogle Scholar
  2. 2.
    Baciu, C.L., May, S.: Stability of charged, mixed lipid bilayers: effect of electrostatic coupling between the monolayers. J. Phys. Condens. Matter 16, S2455 (2004)CrossRefGoogle Scholar
  3. 3.
    Baumgart, T., Hess, S.T., Webb, W.W.: Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425, 821–824 (2003)CrossRefGoogle Scholar
  4. 4.
    Bozic, B., Kralj-Iglic, V., Svetina, S.: Coupling between vesicle shape and lateral distribution of mobile membrane inclusions. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73, 041915 (2006)CrossRefGoogle Scholar
  5. 5.
    Brown, D.A., London, E.: Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17221–17224 (2000)CrossRefGoogle Scholar
  6. 6.
    Cahn, J., Hilliard, J.: Free energy of a nonuniform system: interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)CrossRefGoogle Scholar
  7. 7.
    Chazal, N., Gerlier, D.: Virus entry, assembly, budding, and membrane rafts. Microbiol. Mol. Biol. Rev. 67, 226–237 (2003)CrossRefGoogle Scholar
  8. 8.
    Collins, M.D., Keller, S.L.: Tuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayers. Proc. Natl. Acad. Sci. USA 105, 124–128 (2008)CrossRefGoogle Scholar
  9. 9.
    Cooke, I.R., Deserno, M.: Coupling between lipid shape and membrane curvature. Biophys. J. 91, 487–495 (2006)CrossRefGoogle Scholar
  10. 10.
    Derganc, J.: Curvature-driven lateral segregation of membrane constituents in Golgi cisternae. Phys. Biol. 4, 317–324 (2007)CrossRefGoogle Scholar
  11. 11.
    Dietrich, C., Bagatolli, L.A., Volovyk, Z.N., Thompson, N.L., Levi, M., Jacobson, K., Gratton, E.: Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428 (2001)CrossRefGoogle Scholar
  12. 12.
    Dietrich, C., Volovyk, Z.N., Levi, M., Thompson, N.L., Jacobson, K.: Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc. Natl. Acad. Sci. USA 98, 10642–10647 (2001)CrossRefGoogle Scholar
  13. 13.
    Hamilton, J.A.: Fast flip-flop of cholesterol and fatty acids in membranes: implications for membrane transport proteins. Curr. Opin. Lipidol. 14, 263–271 (2003)CrossRefGoogle Scholar
  14. 14.
    Hanzal-Bayer, M.F., Hancock, J.F.: Lipid rafts and membrane traffic. FEBS Lett. 581, 2098–2104 (2007)CrossRefGoogle Scholar
  15. 15.
    Heinrich, M., Tian, A., Esposito, C., Baumgart, T.: Dynamic sorting of lipids and proteins in membrane tubes with a moving phase boundary. Proc. Natl. Acad. Sci. USA 107, 7208–7213 (2010)CrossRefGoogle Scholar
  16. 16.
    Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. (C) 28, 693–703 (1973)Google Scholar
  17. 17.
    Hirose, Y., Komura, S., Andelman, D.: Coupled modulated bilayers: a phenomenological model. Chem. Phys. Chem. 10, 2839–2846 (2009)CrossRefGoogle Scholar
  18. 18.
    Huttner, W.B., Zimmerberg, J.: Implications of lipid microdomains for membrane curvature, budding and fission. Curr. Opin. Cell Biol. 13, 478–484 (2001)CrossRefGoogle Scholar
  19. 19.
    Kamal, M., Millis, D., Grzybek, M., Howard, J.: Measurement of the membrane curvature preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature. Proc. Natl. Acad. Sci. USA 106, 22245–22250 (2009)CrossRefGoogle Scholar
  20. 20.
    Kodama, H., Komura, S.: Frustration-induced ripple phase in bilayer membranes. J. Phys. II Fr. 3, 1305–1311 (1993)Google Scholar
  21. 21.
    Komura, S., Shimokawa, N., Andelman, D.: Tension-induced morphological transition in mixed lipid bilayers. Langmuir 22, 6771–6774 (2006)CrossRefGoogle Scholar
  22. 22.
    Leibler, S.: Curvature instability in membranes. J. Phys. 47, 507–516 (1986)CrossRefGoogle Scholar
  23. 23.
    Leibler, S., Andelman, D.: Ordered and curved meso-structures in membranes and amphiphilic films. J. Phys. (Paris) 48, 2013–2018 (1987)CrossRefGoogle Scholar
  24. 24.
    Lewis, B.A., Engelman, D.M.: Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol. 166, 211–217 (1983)CrossRefGoogle Scholar
  25. 25.
    Liang, Q., Ma, Y.Q.: Curvature-induced lateral organization in mixed lipid bilayers supported on a corrugated substrate. J. Phys. Chem. B 113, 8048–8055 (2009)Google Scholar
  26. 26.
    MacKintosh, F.C., Safran, S.A.: Phase separation and curvature of bilayer membranes. Phys. Rev. E 47, 1180–1183 (1993)CrossRefGoogle Scholar
  27. 27.
    May, S.: Trans-monolayer coupling of fluid domains in lipid bilayers. Soft Matter 5, 3148–3156 (2009)CrossRefGoogle Scholar
  28. 28.
    Mercker, M., Ptashnyk, M., Kühnle, J., Hartmann, D., Weiss, M., Jäger, W.: A multiscale approach to curvature modulated sorting in biological membranes. J. Theoret. Biol. 301, 67–82 (2012)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Mercker, M., Richter, T., Hartmann, D.: Sorting mechanisms and communication in phase-separating coupled monolayers. J. Phys. Chem. B 115, 11739–11745 (2011)CrossRefGoogle Scholar
  30. 30.
    Minami, A., Yamada, K.: Domain-induced budding in buckling membranes. Eur. Phys. J. E 23, 367–374 (2007)CrossRefGoogle Scholar
  31. 31.
    Pande, G.: The role of membrane lipids in regulation of integrin functions. Curr. Opin. Cell Biol. 12, 569–574 (2000)CrossRefGoogle Scholar
  32. 32.
    Parthasarathy, R., Yu, C., Groves, J.T.: Curvature-modulated phase separation in lipid bilayer membranes. Langmuir 22, 5095–5099 (2006)CrossRefGoogle Scholar
  33. 33.
    Pencer, J., Jackson, A., Kučerka, N., Nieh, M.P., Katsaras, J.: The influence of curvature on membrane domains. Eur. Biophys. J. 37, 665–671 (2008)CrossRefGoogle Scholar
  34. 34.
    Ramaswamy, S., Toner, J., Prost, J.: Nonequilibrium fluctuations, traveling waves, and instabilities in active membranes. Phys. Rev. Lett. 84, 3494–3497 (2000)CrossRefGoogle Scholar
  35. 35.
    Rawicz, W., Olbrich, K.C., McIntosh, T., Needham, D., Evans, E.: Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339 (2000)CrossRefGoogle Scholar
  36. 36.
    Reigada, R., Buceta, J., Lindenberg, K.: Nonequilibrium patterns and shape fluctuations in reactive membranes. Phys. Rev. E 71, 051906 (2005)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Risselada, H.J., Marrink, S.J.: The molecular face of lipid rafts in model membranes. Proc. Natl. Acad. Sci. USA 105, 17367–17372 (2008)CrossRefGoogle Scholar
  38. 38.
    Risselada, H.J., Marrink, S.J.: Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations. Phys. Chem. Chem. Phys. 11, 2056–2067 (2009)CrossRefGoogle Scholar
  39. 39.
    Roux, A., Cuvelier, D., Nassoy, P., Prost, J., Bassereau, P., Goud, B.: Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J. 24, 1537–1545 (2005)CrossRefGoogle Scholar
  40. 40.
    Rozovsky, S., Kaizuka, Y., Groves, T.: Formation and spatio-temporal evolution of periodic structures in lipid bilayers. J. Am. Chem. Soc. 127, 36–37 (2005)CrossRefGoogle Scholar
  41. 41.
    Rózycki, B., Weikl, T.R., Lipowsky, R.: Stable patterns of membrane domains at corrugated substrates. Phys. Rev. Lett. 100, 098103 (2008)CrossRefGoogle Scholar
  42. 42.
    Safran, S.A., Pincus, P., Andelman, D.: Theory of spontaneous vesicle formation in surfactant mixtures. Science 248, 354–356 (1990)CrossRefGoogle Scholar
  43. 43.
    Safran, S.A., Pincus, P., Andelman, D., MacKintosh, F.C.: Stability and phase behavior of mixed surfactant vesicles. Phys. Rev. A 43, 1071–1078 (1991)CrossRefGoogle Scholar
  44. 44.
    Seifert, U.: Curvature-induced lateral phase segregation in two-component vesicles. Phys. Rev. Lett. 70, 1335–1338 (1993)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Semrau, S., Idema, T., Holtzer, L., Schmidt, T., Storm, C.: Accurate determination of elastic parameters for multicomponent membranes. Phys. Rev. Lett. 100, 088101 (2008)CrossRefGoogle Scholar
  46. 46.
    Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature 387, 569–572 (1997)CrossRefGoogle Scholar
  47. 47.
    Simons, K., Toomre, D.: Lipids rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–41 (2000)CrossRefGoogle Scholar
  48. 48.
    Taniguchi, T.: Shape deformation and phase separation dynamics of two-component vesicles. Phys. Rev. Lett. 76, 4444–4447 (1996)CrossRefGoogle Scholar
  49. 49.
    Tasaki, S.: Phase-separating elastic system of mixed lipid bilayers. Physica D 246, 23–38 (2013)CrossRefMATHGoogle Scholar
  50. 50.
    Tian, A., Baumgart, T.: Sorting lipids and proteins in membrane curvature gradients. Biophys. J. 96, 2676–2688 (2009)CrossRefGoogle Scholar
  51. 51.
    Veatch, S.L., Keller, S.: Organization in lipid membranes containing cholesterol. Phys. Rev. Lett. 89, 268101 (2002)CrossRefGoogle Scholar
  52. 52.
    van der Goot, F.G., Harder, T.: Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Semin. Immunol. 13, 89–97 (2001)CrossRefGoogle Scholar
  53. 53.
    Veatch, S.L., Keller, S.: Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85, 3074 (2003)CrossRefGoogle Scholar
  54. 54.
    Veatch, S.L., Keller, S.: Miscibility phase diagrams of giant vesicles containing sphingomyelin. Phys. Rev. Lett. 94, 148101 (2005)CrossRefGoogle Scholar
  55. 55.
    Veatch, S.L., Keller, S.: Seeing spots: complex phase behavior in simple membranes. Biochim. Biophys. J. 1746, 172–185 (2005)Google Scholar
  56. 56.
    Wagner, A.J., Loew, S., May, S.: Influence of monolayer-monolayer coupling on the phase behavior of a fluid lipid bilayer. Biophys. J. 93, 4268–4277 (2007)CrossRefGoogle Scholar
  57. 57.
    Wagner, A.J., May, S.: Electrostatic interactions across a charged lipid bilayer. Eur. Biophys. J. 36, 293–303 (2007)CrossRefGoogle Scholar
  58. 58.
    Yanagisawa, M., Imai, M., Masui, T., Komura, S., Ohta, T.: Growth dynamics of domains in ternary fluid vesicles. Biophys. J. 92, 115–125 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Frontier Research Institute for Interdisciplinary Sciences (FRIS)Tohoku UniversityAoba-ku, SendaiJapan

Personalised recommendations