Advertisement

Multi-scale Problems, High Performance Computing and Hybrid Numerical Methods

  • G. Balarac
  • G. -H. Cottet
  • J. -M. Etancelin
  • J. -B. Lagaert
  • F. Perignon
  • C. Picard
Conference paper
Part of the Mathematics for Industry book series (MFI, volume 1)

Abstract

The turbulent transport of a passive scalar is an important and challenging problem in many applications in fluid mechanics. It involves different range of scales in the fluid and in the scalar and requires important computational resources. In this work we show how hybrid numerical methods, combining Eulerian and Lagrangian schemes, are natural tools to address this mutli-scale problem. One in particular shows that in homogeneous turbulence experiments at various Schmidt numbers these methods allow to recover the theoretical predictions of universal scaling at a minimal cost. We also outline how hybrid methods can take advantage of heterogeneous platforms combining CPU and GPU processors.

Keywords

High performance computing Particle method Hybrid computing Turbulence Transport equations 

Notes

Acknowledgments

This work was partially supported by the Agence Nationale pour la Recherche (ANR) under Contracts No. ANR-2010-JCJC-091601 and ANR-2010-COSI-0009. G.-H. C. is also grateful for the support from Institut Universitaire de France. Computations reported in Sect. 3 were performed using HPC resources from GENCI-IDRIS (Grant 2012-020611).

References

  1. 1.
    Tryggvason, G., Scardovelli, R.S.: Direct Numerical Simulations of Gas-Liquid Multiphase Flows. Cambridge University Press, Zaleski (2011)Google Scholar
  2. 2.
    Lodato, G., Domingo, P., Vervisch, L.: Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows. J. Comput. Phys. 227(1), 5105–5143 (2008)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Batchelor, G.K.: Small-scale variation of convected quantities like temperature in turbulent fluid part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5(01), 113–133 (1959)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Corrsin, S.: On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22(4), 469–473 (1951)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Obukhov, A.M.: The structure of the temperature field in a turbulent flow. Dokl. Akad. Navk. SSSR 39, 391 (1949)Google Scholar
  6. 6.
    Kraichnan, R.: Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11, 945–953 (1968)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Cottet, G.-H., Balarac, G., Coquerelle M.: Subgrid particle resolution for the turbulent transport of a passive scalar. In: Proceedings of the 12th EUROMECH European Turbulence Conference, Advances in Turbulence XII, vol. 132, pp. 779–782 (September 2009)Google Scholar
  8. 8.
    Gotoh, T., Hatanaka, S., Miura, H.: Spectral compact difference hybrid computation of passive scalar in isotropic turbulence. J. Comput. Phys. 231(21), 7398–7414 (2012)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Koumoutsakos, P., Leonard, A.: High-resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296, 1–38 (1995)CrossRefMATHGoogle Scholar
  10. 10.
    Cottet, G.-H., Michaux, B., Ossia, S., Vanderlinden, G.: A comparison of spectral and vortex methods in three-dimensional incompressible flows. J. Comput. Phys. 175(2), 702–712 (2002)CrossRefMATHGoogle Scholar
  11. 11.
    Cottet, G.-H., Poncet, P.: Advances in direct numerical simulations of 3d wall-bounded flows by vortex-in-cell methods. J. Comput. Phys. 193(1), 136–158 (2004)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Ploumhans, P., Winckelmans, G., Salmon, J., Leonard, A., Warren, M.: Vortex methods for direct numerical simulation of three-dimensional bluff body flows: application to the sphere at Re=300, 500 and 1000. J. Comput. Phys. 178(2), 427–463 (2002)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Poncet, P.: Topological aspects of the three-dimensional wake behind rotary oscillating circular cylinder. J. Fluid Mech. 517, 27–53 (2004)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Hieber, S.E., Koumoutsakos, P.: A lagrangian particle level set method. J. Comput. Phys. 210(1), 342–367 (2005)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Bergdorf, M., Koumoutsakos, P.K.: A Lagrangian particle-wavelet method. Multiscale Model Simul: SIAM Interdisc J 5, 980–995 (2006)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Magni, A., Cottet, G.: Accurate, non-oscillatory, remeshing schemes for particle methods. J Comput Phys. 231(1), 152–172 (2012)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Cottet, G.-H., Etancelin, J.-M., Perignon, F., Picard, C.: High-order Semi-Lagrangian particle methods for transport equation: numerical analysis and implementation issues. ESAIM: Math. Model. Numer. Anal.Google Scholar
  18. 18.
    Lagaert, J.-B., Balarac, G., Cottet, G.-H.: Hybrid spectral-particle method for the turbulent transport of a passive scalar. J. Comput. Phys. 260(1), 127–142 (2014)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Rossinelli, D., Bergdorf, M., Cottet, G.-H., Koumoutsakos, P.: GPU accelerated simulations of bluff body flows using vortex methods. J. Comput. Phys. 229(9), 33163333 (2010)MathSciNetGoogle Scholar
  20. 20.
    Sbalzarini, I.F., Walther, J.H., Bergdorf, M., Hieber, S.E., Kotsalis, E.M., Koumoutsakos, P.: PPM—a highly efficient parallel particle-mesh library for the simulation of continuum systems. J. Comput. Phys. 215, 566–588 (2006)CrossRefMATHGoogle Scholar
  21. 21.
    Lesieur, M.: Turbul. Fluids. Fluid mechanics and its applications, Springer, Dordrecht (2008)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • G. Balarac
    • 1
  • G. -H. Cottet
    • 2
  • J. -M. Etancelin
    • 2
  • J. -B. Lagaert
    • 3
  • F. Perignon
    • 2
  • C. Picard
    • 2
  1. 1.LEGICNRS and Université de GrenobleGrenoble Cedex 9France
  2. 2.Laboratoire Jean KuntzmannCNRS and Université de GrenobleGrenoble Cedex 9France
  3. 3.Laboratoire de MathématiquesUniversité Paris 11Orsay CedexFrance

Personalised recommendations