Advertisement

Nucleation Rate Identification in Binary Phase Transition

  • Dietmar Hömberg
  • Shuai Lu
  • Kenichi Sakamoto
  • Masahiro Yamamoto
Conference paper
Part of the Mathematics for Industry book series (MFI, volume 1)

Abstract

In this chapter, we study a PDE-ODE system arising from binary phase transition coupled with an energy balance to account for recalescence effects. The phase transition is described by classic arguments on nucleation and growth process. The main novelty of our work is the identification of temperature dependent nucleation rates from measurements in a subdomain. We prove the uniqueness of the parameter identification problem and numerical results support the theoretical results.

Keywords

Inverse problem Optimal control Coupled system Parameter identification 

References

  1. 1.
    Avrami M.: Kinetics of phase change. I general theory. J. Chem. Phys. 7, 110311.12. (1939)Google Scholar
  2. 2.
    Avrami, M.: Kinetics of phase change. II transformation time relations for random distribution of nuclei. J. Chem. Phys. 8, 212–224 (1940)CrossRefGoogle Scholar
  3. 3.
    Avrami, M.: Kinetics of phase change. III granulation, phase change, and microstructure kinetics of phase change. J. Chem. Phys. 9, 177–184 (1941)CrossRefGoogle Scholar
  4. 4.
    Burger, M., Capasso, V., Micheletti, A.: Optimal control of polymer morphologies. J. Eng. Math. 49, 339–358 (2004)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Choulli, M., Ouhabaz, E.M., Yamamoto, M.: Stable determination of a semilinear term in a parabolic equation. Commun. Pure Appl. Anal. 5, 447–462 (2006)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Christian, J.W.: The Theory of Transformations in Metals and Alloys, Part I. Pergamon, New York (2002)Google Scholar
  7. 7.
    DuChateau, P., Rundell, W.: Unicity in an inverse problem for an unknown reaction term in a reaction-diffusion equation. J. Differ. Equ. 59, 155–164 (1985)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Egger, H., Engl, H., Klibanov, M.V.: Global uniqueness and Hölder stability for recovering a nonlinear source term in a parabolic equation. Inverse Prob. 21, 271–290 (2005)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Eisenhüttenleute, V.D. (ed): Steel—A Handbook for Materials Research and Engineering. Vol. 1: Fundamentals. Springer, Berlin (1992)Google Scholar
  10. 10.
    Götz, Th, Rinnau, R., Struckmeier, J.: Optimal control of crystallization processes. Math. Models Methods Appl. Sci. 16, 2029–2045 (2006)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Hömberg, D., Liu, J., Togobytska, N.: Identification of the thermal growth characteristics of coagulated tumor tissue in laser-induced thermotherapy. Math. Meth. Appl. Sc. 35, 497–509 (2012)CrossRefMATHGoogle Scholar
  12. 12.
    Hömberg, D., Lu, S., Sakamoto, K., Yamamoto, M.: Parameter identification in non-isothermal nucleation and growth processes. Inverse Prob. 30, 035003 (24pp) (2014)Google Scholar
  13. 13.
    Hömberg, D., Togobytska, N., Yamamoto, M.: On the evaluation of dilatometer experiments. Appl. Anal. 88, 669–681 (2009)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Isakov, V.: On uniqueness in inverse problems for semilinear parabolic equations. Arch. Rat. Mech. Anal. 124, 1–12 (1993)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Johnson, W.A., Mehl, R.F.: Reaction kinetics in processes of nucleation and growth. Trans. Amer. Inst. Min. Metallurg. Eng. Iron Steel Div. 135, 416–458 (1939)Google Scholar
  16. 16.
    Klibanov, M.V.: Global uniqueness of a multidimensional inverse problem for a nonlinear parabolic equation by a Carleman estimate. Inverse Prob. 20, 1003–1032 (2004)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Kolmogorov, A.N.: A statistical theory for the recrystallization of metals. Izvestia Akademia Nauk Serie Mathematica SSSR 1, 355–359 (1937)Google Scholar
  18. 18.
    Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Amer. Math. Soc. Transl. 23, Providence (1968)Google Scholar
  19. 19.
    Leblond, J.B., Devaux, J.: A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size. Acta Met. 32, 137–146 (1984)CrossRefGoogle Scholar
  20. 20.
    Lorenzi, A.: An inverse problem for a semilinear parabolic equation. Annali di Mat. Pura ed Appl. 131, 145–166 (1982)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Pilant, M.S., Rundell, W.: An inverse problem for a nonlinear parabolic equation. Comm. Partial Differ. Equ. 11, 445–457 (1986)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Rösch, A., Tröltzsch, F.: An optimal control problem arising from the identification of nonlinear heat transfer law. Arch. Control Sci. 1(3–4), 183–195 (1992)MATHMathSciNetGoogle Scholar
  23. 23.
    Visintin, A.: Mathematical models of solid-solid phase transitions in steel. IMA J. Appl. Math. 39, 143–157 (1987)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Yamamoto, M.: Carleman estimates for parabolic equations and applications. Inverse Prob. 25, 123013 (75pp) (2009)Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Dietmar Hömberg
    • 1
  • Shuai Lu
    • 2
  • Kenichi Sakamoto
    • 3
  • Masahiro Yamamoto
    • 4
  1. 1.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany
  2. 2.School of Mathematical SciencesFudan UniversityShanghaiChina
  3. 3.Mathematical Science and Technology Research Laboratory, Advanced Technology Research Laboratories, Technical Development BureauNippon Steel & Sumitomo Metal CorporationFuttsuJapan
  4. 4.Department of Mathematical SciencesThe University of TokyoTokyoJapan

Personalised recommendations