Advertisement

Applied Algebraic Geometry in Model Based Design for Manufacturing

Conference paper
Part of the Mathematics for Industry book series (MFI, volume 1)

Abstract

In this paper we show the interplay of real algebraic geometry and control system design in manufacturing from the standpoint “how applications affect to algorithm development in real algebraic geometry”. One of important perspectives of the interaction is how we overcome the inherent computational complexity for solving practical problems and the key point is making good use of their special structures of the practical problems.

Keywords

Real algebraic geometry Quantifier elimination Symbolic optimization Control system design  Manufacturing design 

References

  1. 1.
    Akahori, I., Hara, S.: Computer aided control system analysis and design based on the concept object-orientation (in Japanese). Trans. SICE 24(5), 506–513 (1988)Google Scholar
  2. 2.
    Anai, H., Hara, S.: Fixed-structure robust controller synthesis based on sign definite condition by a special quantifier elimination. In: Proceedings of American Control Conference, pp. 1312–1316 (2000)Google Scholar
  3. 3.
    Anai, H., Hara, S.: A parameter space approach to fixed-order robust controller synthesis by quantifier elimination. Int. J. Control 79(11), 1321–1330 (2006)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Algebraic Decomposition. Springer, New York (1998)MATHGoogle Scholar
  5. 5.
    Collins, G.E.: Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition, LNCS 32. Springer, Berlin (1975)Google Scholar
  6. 6.
    Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symbolic Comput. 12(3), 299–328 (Sept. 1991)Google Scholar
  7. 7.
    Didier, H., Andrea, G. : Positive Polynomials in Control. Lecture Notes in Control and Information Sciences, vol. 312. Springer, Berlin (2005)Google Scholar
  8. 8.
    Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic. ACM SIGSAM Bull. 31(2), 2–9 (1997)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Dorato, P., Yang, W., Abdallah, C.: Robust multi-objective feedback design by quantifier elimination. J. Symb. Comp. 24, 153–159 (1997)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    González-Vega, L.: A combinatorial algorithm solving some quantifier elimination problems. In: Caviness, B., Johnson, J. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and Monographs in Symbolic Computation, pp. 365–375. Springer, Berlin (1998)Google Scholar
  11. 11.
    Hyodo, N., Hong, M., Yanami, H., Hara, S., Anai, H.: Solving and visualizing nonlinear parametric constraints in control based on quantifier elimination. Appl. Algebra Eng. Commun. Comput. 18(6), 497–512 (2007)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Iwane, H., Higuchi, H., Anai, H.: (2013) An effective implementation of a special quantifier elimination for a sign definite condition by logical formula simplification. In: ASC 2013: Lecture Notes in Computer Science, vol. 8136, pp. 194–208. Springer, Berlin (2013)Google Scholar
  13. 13.
    Iwane, H., Yanami, H., Anai, H.: A symbolic-numeric approach to multi-objective optimization in manufacturing design. Math. Comput. Sci. 5(3), 315–334 (2011)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of symbolic-numeric cylindrical algebraic decomposition for quantifier elimination. Theor. Comput. Sci. 479, 43–69 (2013)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Jirstrand, M.: Nonlinear control system design by quantifier elimination. J. Symb. Comp. 24(2), 137–152 (1997)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J. 36(5), 450–462 (1993)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Matsui, Y., Iwane, H., Anai, H.: Development of Computer Algebra Research and Collaboration with Industry, MI Lecture Note Series, vol 49, pp. 43–52. Kyushu University (2013)Google Scholar
  18. 18.
    Saito, O.: Computer aided control engineering: periphery of control engineering and computer algebraic manipulation (in Japanese). Syst. Control 29(12), 785–794 (1985)Google Scholar
  19. 19.
    Seidenberg, A.: A new decision method for elementary algebra. Ann. Math. 60, 365–374 (1954)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Strzeboński, A.W.: Cylindrical algebraic decomposition using validated numerics. J. Symbolic Comput. 41(9), 1021–1038 (2006)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Sturm, T.: New domains for applied quantifier elimination. In: Proceedings of the 14th International Workshop on Computer Algebra (CASC) 2006, pp. 295–301 (2006)Google Scholar
  22. 22.
    Tarski, A.: Decision Methods for Elementary Algebra and Geometry. University of California Press, Berkeley (1951)Google Scholar
  23. 23.
    Weispfenning, V.: The complexity of linear problems in fields. J. Symbolic Comput. 5(1–2), 3–27 (1988)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Weispfenning, V.: Simulation and optimization by quantifier elimination. J. Symb. Comput. 24(2), 189–208 (1997)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Weispfenning, V.: A new approach to quantifier elimination for real algebra. In: Caviness, F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and Monographs in Symbolic Computation, pp. 376–392. Springer, Berlin (1998)Google Scholar
  26. 26.
    Yoshimura, S., Iki, H., Uriu, Y., Anai, H., Hyodo, N.: Generator excitation control using a parameter space design method. In: 43rd International Universities Power Engineering Conference (UPEC 2008), pp. 1–4 (2008)Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Knowledge Platforms LaboratoriesFujitsu Laboratories Ltd.KawasakiJapan
  2. 2.Institute of Mathematics for IndustryKyushu UniversityFukuokaJapan

Personalised recommendations