Modelling Collective Cytoskeletal Transport and Intracellular Traffic

Conference paper
Part of the Mathematics for Industry book series (MFI, volume 1)

Abstract

Biological cells require active fluxes of matter to maintain their internal organization and perform multiple tasks to live. In particular they rely on cytoskeletal transport driven by motor proteins, ATP-fueled molecular engines, for delivering vesicles and biochemically active cargoes inside the cytoplasm. Experimental progress allows nowadays quantitative studies describing intracellular transport phenomena down to the nanometric scale of single molecules. Theoretical approaches face the challenge of modelling the multiscale, out-of-equilibrium and non-linear properties of cytoskeletal transport: from the mechanochemical complexity of a single molecular motor up to the collective transport on cellular scales. We will present some of our recent progress in building a generic modelling scheme for cytoskeletal transport based on lattice gas models called “exclusion processes”. Interesting new properties arise from the emergence of density inhomogeneities of particles along the network of one dimensional lattices. Moreover, understanding these processes on networks can provide important hints for other fundamental and applied problems such as vehicular, pedestrian and data traffic, or ultimately for technological and biomedical applications.

Keywords

Molecular motors Transport Traffic phenomena  Networks Cytoskeleton Biological physics Statistical mechanics Stochastic process Nonlinear phenomena 

Notes

Acknowledgments

The authors thank the European Molecular Biology Organization (EMBO), the Centre National de la Recherche Scientifique (CNRS), the National Agency for Research (ANR), the Program of Laboratory of Excellence (LabEx) NUMEV and the Scientific Council of the University of Montpellier 2 for the financial support obtained during these years. We acknowledge the interesting discussions we had on these topics in these years with A. Abrieu, C. Appert, P. Arndt, B. Bassetti, P. Benetatos, M. Bornens, C. Braun-Breton, S. Camalet, G. Cappello, L. Ciandrini, M. Cosentino-Lagomarsino, N. Crampe, O. Dauloudet, S. Diez, J. Dorignac, A. Dunn, B. Embley, M. Evans, T. Franosch F. Geniet, J. Howard, K. Kroy, J.F. Joanny, F. Jülicher, K. Kruse, C. Leduc, M. Lefranc, V. Lorman, P. Malgaretti, K. Mallick, P. Montcourrier, B. Mulder, I. Pagonabarraga, A. Parmeggiani, P. Pierobon, J. Prost, O. Radulescu, A. Raguin, C.M. Romano, E. Sackmann, J. Santos, K. Sasaki, C.F. Schmidt, G.M. Schütz, K. Sekimoto, J. Spudich, F. Turci, C. Vanderzande and M. Wakayama. N.K. and A.P. would like to thank B. Embley for his contribution in the study of TASEP on small networks. In particular, A.P. specially thanks E. Frey for the opportunity to work on exclusion processes for motor protein transport and for the many important and insightful discussions they had on the topic, together with T. Franosch, some years ago.

References

  1. 1.
    Alberts, B., Johnson, A., Walter, P., Lewis, J., Raff, M., Roberts, K.: Molecular Biology of the Cell, 15th edn. Garland, New York (2008)Google Scholar
  2. 2.
    Aridor, M., Hannan, L.A.: Traffic jams II: an update of diseases of intracellular transport. Traffic 3(11), 781–790 (2002)CrossRefGoogle Scholar
  3. 3.
    Hirokawa, N., Takemura, R.: Molecular motors in neuronal development, intracellular transport and diseases. Curr. Opin. Neurobiol. 14(5), 564–573 (2004)CrossRefGoogle Scholar
  4. 4.
    Gunawardena, S., Goldstein, L.S.: Cargo—carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J. Neurobiol. 58(2), 258–271 (2004)CrossRefGoogle Scholar
  5. 5.
    Howard, Mechanics of motor proteins and the cytoskeleton, J. Sinauer Associates, Sunderland, MA, (2001)Google Scholar
  6. 6.
    Ross, J.L., Shuman, H., Holzbaur, E.L., Goldman, Y.E.: Kinesin and dynein-dynactin at intersecting microtubules: motor density affects dynein function. Biophys. J. 94(8), 3115–3125 (2008)CrossRefGoogle Scholar
  7. 7.
    Cai, D., McEwen, D.P., Martens, J.R., Meyhofer, E., Verhey, K.J.: Single molecule imaging reveals differences in microtubule track selection between Kinesin motors. PLoS Biol. 7(10), e1000216 (2009)CrossRefGoogle Scholar
  8. 8.
    Pierobon, P., Achouri, S., Courty, S., Dunn, A.R., Spudich, J.A., Dahan, M., Cappello, G.: Velocity, processivity, and individual steps of single myosin V molecules in live cells. Biophys. J. 96(10), 4268–4275 (2009)CrossRefGoogle Scholar
  9. 9.
    Leduc, C., Padberg-Gehle, K., Varga, V., Helbing, D., Diez, S., Howard, J.: Molecular crowding creates traffic jams of kinesin motors on microtubules. Proc. Nat. Acad. Sci. 109(16), 6100–6105 (2012)CrossRefGoogle Scholar
  10. 10.
    Bálint, S., Vilanova, I.V., lvarez, A.S., Lakadamyali, M.: Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections. Pro. Nat. Acad. Sci. 110(9), 3375–3380 (2013)CrossRefGoogle Scholar
  11. 11.
    Neri, I., Kern, N., Parmeggiani, A.: Totally asymmetric simple exclusion process on networks. Phys. Rev. Lett. 107(6), 068702 (2011)CrossRefGoogle Scholar
  12. 12.
    Neri, I., Kern, N., Parmeggiani, A.: Modeling cytoskeletal traffic: an interplay between passive diffusion and active transport. Phys. Rev. Lett. 110(9), 098102 (2013)CrossRefGoogle Scholar
  13. 13.
    Neri, I., Kern, N., Parmeggiani, A.: Exclusion processes on networks as models for cytoskeletal transport. N. J. Phys. 15(8), 085005 (2013)CrossRefGoogle Scholar
  14. 14.
    Tada, H., Higuchi, H., Wanatabe, T.M., Ohuchi, N.: In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res. 67(3), 1138–1144 (2007)CrossRefGoogle Scholar
  15. 15.
    Farina, F., Pierobon, P., Delevoye, C., Monnet, J., Dingli, F., Loew, D., Quanz, M., Dutreix, M., Cappello, G.: Kinesin KIFC1 actively transports bare double-stranded DNA. Nucl. Acids Res. 41(9), 4926–4937 (2013)CrossRefGoogle Scholar
  16. 16.
    Hamburg, M.A., Collins, F.S.: The path to personalized medicine. N. Eng. J. Med. 363(4), 301–304 (2010)CrossRefGoogle Scholar
  17. 17.
    Chou, T., Mallick, K., Zia, R.K.P.: Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport. Rep Prog. Phys. 74(11), 116601 (2011)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Aghababaie, Y., Menon, G.I., Plischke, M.: Universal properties of interacting Brownian motors. Phys. Rev. E. 59(3), 2578 (1999)CrossRefGoogle Scholar
  19. 19.
    Schütz, G.M.: Exactly solvable models for many-body systems far from equilibrium. Phase Transitions Crit. Phenom. 19, 1–251 (2001)CrossRefGoogle Scholar
  20. 20.
    Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A Math. Theor. 40(46), R333 (2007)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Mallick, K.: Some exact results for the exclusion process. J. Stat. Mech. Theory Exp. 2011(01), P01024 (2011)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Mottishaw, P., Waclaw, B., Evans, M.R.: An exclusion process on a tree with constant aggregate hopping rate. J. Phys. A Math. Theor. 46(40), 405003 (2013)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Liggett, T.M.: Interacting Particle Systems, 276th edn. Springer, Berlin (1985)CrossRefMATHGoogle Scholar
  24. 24.
    Derrida, B.: Non-equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. Theory Exp. 2007(07), P07023 (2007)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Stochastic interacting particle systems out of equilibrium. J. Stat. Mech. Theory Exp. 2007(07), P07014 (2007)CrossRefGoogle Scholar
  26. 26.
    Kirchhoff, G.: Ueber die Auflösung der gleichungen, auf welche man bei der untersuchung der linearen Vertheilung galvanischer Ströme geführt wird Ann. Phys. Chem. 148, 497–508 (1847)Google Scholar
  27. 27.
    Appert, C., Santen, L.: Modélisation du trafic routier par des automates cellulaires. Actes INRETS, 100, (2002)Google Scholar
  28. 28.
    Kirchner, A., Nishinari, K., Schadschneider, A.: Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Phys. Rev. E. 67(5), 056122 (2003)CrossRefGoogle Scholar
  29. 29.
    Chowdhury, D., Schadschneider, A., Nishinari, K.: Physics of transport and traffic phenomena in biology: from molecular motors and cells to organisms. Phys. Life Rev. 2(4), 318–352 (2005)CrossRefGoogle Scholar
  30. 30.
    Lipowsky, R., Chai, Y., Klumpp, S., Liepelt, S., Müller, M.J.: Molecular motor traffic: From biological nanomachines to macroscopic transport. Phys. A Stat. Mech. Appl. 372(1), 34–51 (2006)CrossRefGoogle Scholar
  31. 31.
    Moussaid, M., Guillot, E.G., Moreau, M., Fehrenbach, J., Chabiron, O., Lemercier, S., Pettr, J., Appert-Rolland, C., Degond, P., Theraulaz, G.: Traffic instabilities in self-organized pedestrian crowds. PLoS computational biology 8(3), (2012)Google Scholar
  32. 32.
    Nishinari, K., Sugawara, K., Kazama, T., Schadschneider, A., Chowdhury, D.: Modelling of self-driven particles: foraging ants and pedestrians. Phys. A Stat. Mech. Appl. 372(1), 132–141 (2006)CrossRefGoogle Scholar
  33. 33.
    Karzig, T., von Oppen, F.: Signatures of critical full counting statistics in a quantum-dot chain. Phys. Rev. B 81(4), 045317 (2010)CrossRefGoogle Scholar
  34. 34.
    Reichenbach, T., Franosch, T., Frey, E.: Exclusion processes with internal states. Phys. Rev. Lett. 97(5), 050603 (2006)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Chou, T.: An interacting spinflip model for one-dimensional proton conduction. J. Phy. A Math. Gen. 35(21), 4515 (2002)CrossRefGoogle Scholar
  36. 36.
    Karcher, R.L., Deacon, S.W., Gelfand, V.I.: Motor-cargo interactions: the key to transport specificity. Trends Cell Biol. 12(1), 21–27 (2002)CrossRefGoogle Scholar
  37. 37.
    Jülicher, F., Ajdari, A., Prost, J.: Modeling molecular motors. Rev. Mod. Phys. 69(4), 1269 (1997)CrossRefGoogle Scholar
  38. 38.
    Parmeggiani, A., Schmidt, C. F.: Micromechanics of molecular motors: experiments and theory. In: Function and Regulation of Cellular Systems (pp. 151–176). Birkhäuser Basel (2004)Google Scholar
  39. 39.
    Lipowsky, R., Klumpp, S.: Life is motion: multiscale motility of molecular motors. Phys. A Stat. Mech. Appl. 352(1), 53–112 (2005)CrossRefGoogle Scholar
  40. 40.
    Parmeggiani, A.: Non-equilibrium collective transport on molecular highways. In: Traffic and granular flow 07 (pp. 667–677). Springer, Berlin Heidelberg (2009)Google Scholar
  41. 41.
    Gross, S.P.: Hither and yon: a review of bi-directional microtubule-based transport. Phys. Biol. 1(2), R1 (2004)CrossRefGoogle Scholar
  42. 42.
    Nagel, K., Herrmann, H.J.: Deterministic models for traffic jams. Phys. A Stat. Mech. Appl. 199(2), 254–269 (1993)CrossRefMATHGoogle Scholar
  43. 43.
    Schreckenberg, M., Schadschneider, A., Nagel, K., Ito, N.: Discrete stochastic models for traffic flow. Phys. Rev. E 51(4), 2939 (1995)CrossRefGoogle Scholar
  44. 44.
    MacDonald, C.T., Gibbs, J.H., Pipkin, A.C.: Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6(1), 1–25 (1968)CrossRefGoogle Scholar
  45. 45.
    MacDonald, C.T., Gibbs, J.H.: Concerning the kinetics of polypeptide synthesis on polyribosomes. Biopolymers 7(5), 707–725 (1969)CrossRefGoogle Scholar
  46. 46.
    Ciandrini, L., Stansfield, I., Romano, M.C.: Ribosome traffic on mRNAs maps to gene ontology: genome-wide quantification of translation initiation rates and polysome size regulation. PLoS Comput. Biol. 9(1), e1002866 (2013)CrossRefGoogle Scholar
  47. 47.
    Parmeggiani, A., Franosch, T., Frey, E.: Phase coexistence in driven one-dimensional transport. Phys. Rev. Lett. 90(8), 086601 (2003)CrossRefGoogle Scholar
  48. 48.
    Parmeggiani, A., Franosch, T., Frey, E.: Totally asymmetric simple exclusion process with Langmuir kinetics. Phys. Rev. E 70(4), 046101 (2004)CrossRefMathSciNetGoogle Scholar
  49. 49.
    Popkov, V., Rkos, A., Willmann, R.D., Kolomeisky, A.B., Schütz, G.M.: Localization of shocks in driven diffusive systems without particle number conservation. Phys. Rev. E 67(6), 066117 (2003)CrossRefGoogle Scholar
  50. 50.
    Burgers, J.: Kon. Nde. Akad. Wet. Verh. (Eerste Sectie) 17, 1 (1939)MathSciNetGoogle Scholar
  51. 51.
    Burgers, J. M.: Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion (pp. 281–334). Springer, Netherlands (1995)Google Scholar
  52. 52.
    Shaw, L.B., Zia, R.K.P., Lee, K.H.: Totally asymmetric exclusion process with extended objects: a model for protein synthesis. Phys. Rev. E 68(2), 021910 (2003)CrossRefGoogle Scholar
  53. 53.
    Pierobon, P., Frey, E., Franosch, T.: Driven lattice gas of dimers coupled to a bulk reservoir. Phys. Rev. E 74(3), 031920 (2006)CrossRefGoogle Scholar
  54. 54.
    Derrida, B., Domany, E., Mukamel, D.: An exact solution of a one-dimensional asymmetric exclusion model with open boundaries. J. Stat. Phys. 69(3–4), 667–687 (1992)CrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    Schütz, G., Domany, E.: Phase transitions in an exactly soluble one-dimensional exclusion process. J. Stat. Phys. 72(1–2), 277–296 (1993)CrossRefMATHGoogle Scholar
  56. 56.
    Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A Math. Gen. 26(7), 1493 (1993)CrossRefMATHMathSciNetGoogle Scholar
  57. 57.
    Kolomeisky, A.B., Schütz, G.M., Kolomeisky, E.B., Straley, J.P.: Phase diagram of one-dimensional driven lattice gases with open boundaries. J. Phys. A Math. Gen. 31(33), 6911 (1998)CrossRefMATHGoogle Scholar
  58. 58.
    Santen, L., Appert, C.: The asymmetric exclusion process revisited: fluctuations and dynamics in the domain wall picture. J. Stat. Phys. 106(1–2), 187–199 (2002)CrossRefMATHMathSciNetGoogle Scholar
  59. 59.
    Klumpp, S., Lipowsky, R.: Traffic of molecular motors through tube-like compartments. J. Stat. Phys. 113(1–2), 233–268 (2003)CrossRefMATHMathSciNetGoogle Scholar
  60. 60.
    Krug, J.: Boundary-induced phase transitions in driven diffusive systems. Phys. Rev. Lett. 67(14), 1882 (1991)CrossRefMathSciNetGoogle Scholar
  61. 61.
    Pierobon, P., Parmeggiani, A., von Oppen, F., Frey, E.: Dynamic correlation functions and Boltzmann-Langevin approach for driven one-dimensional lattice gas. Phys. Rev. E. 72(3), 036123 (2005)Google Scholar
  62. 62.
    Luby-Phelps, K.: Physical properties of cytoplasm. Curr. Opin. Cell Biol. 6(1), 3–9 (1994)CrossRefGoogle Scholar
  63. 63.
    Brankov, J., Pesheva, N., Bunzarova, N.: Totally asymmetric exclusion process on chains with a double-chain section in the middle: computer simulations and a simple theory. Phys. Rev. E 69(6), 066128 (2004)CrossRefGoogle Scholar
  64. 64.
    Embley, B., Parmeggiani, A., Kern, N.: Understanding totally asymmetric simple-exclusion-process transport on networks: generic analysis via effective rates and explicit vertices. Phys. Rev. E 80(4), 041128 (2009)CrossRefGoogle Scholar
  65. 65.
    Varga, V., Leduc, C., Bormuth, V., Diez, S., Howard, J.: Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization. Cell 138(6), 1174–1183 (2009)CrossRefGoogle Scholar
  66. 66.
    Raguin, A., Parmeggiani, A., Kern, N.: Role of network junctions for the totally asymmetric simple exclusion process. Phys. Rev. E 88(4), 042104 (2013)CrossRefGoogle Scholar
  67. 67.
    Embley, B., Parmeggiani, A., Kern, N.: HEX-TASEP: dynamics of pinned domains for TASEP transport on a periodic lattice of hexagonal topology. J. Phys. Condens. Matter 20(29), 295213 (2008)CrossRefGoogle Scholar
  68. 68.
    Nishinari, K., Okada, Y., Schadschneider, A., Chowdhury, D.: Intracellular transport of single-headed molecular motors KIF1A. Phys. Rev. Lett. 95(11), 118101 (2005)CrossRefGoogle Scholar
  69. 69.
    Ciandrini, L., Stansfield, I.C.R.M., Romano, M.C.: Role of the particles stepping cycle in an asymmetric exclusion process: a model of mRNA translation. Phys. Rev. E 81(5), 051904 (2010)CrossRefGoogle Scholar
  70. 70.
    Marchetti, M.C., Joanny, J.F., Ramaswamy, S., Liverpool, T.B., Prost, J., Rao, M., Simha, R.A.: Hydrodynamics of soft active matter. Rev. Mod. Phys. 85(3), 1143 (2013)CrossRefGoogle Scholar
  71. 71.
    Greulich, P., Santen, L.: Active transport and cluster formation on 2D networks. Europ. Phys. J. E 32(2), 191–208 (2010)CrossRefGoogle Scholar
  72. 72.
    Ezaki, T., Nishinari, K.: A balance network for the asymmetric simple exclusion process. J. Stat. Mech. Theory Exp. 2012(11), P11002 (2012)CrossRefGoogle Scholar
  73. 73.
    Kruse, K., Sekimoto, K.: Growth of fingerlike protrusions driven by molecular motors. Phys. Rev. E 66(3), 031904 (2002)CrossRefGoogle Scholar
  74. 74.
    Klein, G.A., Kruse, K., Cuniberti, G., Jülicher, F.: Filament depolymerization by motor molecules. Phys. Rev. Lett. 94(10), 108102 (2005)CrossRefGoogle Scholar
  75. 75.
    Reese, L., Melbinger, A., Frey, E.: Crowding of molecular motors determines microtubule depolymerization. Biophys. J. 101(9), 2190–2200 (2011)CrossRefGoogle Scholar
  76. 76.
    Johann, D., Erlenkmper, C., Kruse, K.: Length regulation of active biopolymers by molecular motors. Phys. Rev. Lett. 108(25), 258103 (2012)CrossRefGoogle Scholar
  77. 77.
    Melbinger, A., Reese, L., Frey, E.: Microtubule length regulation by molecular motors. Phys. Rev. Lett. 108(25), 258104 (2012)CrossRefGoogle Scholar
  78. 78.
    Klumpp, S., Nieuwenhuizen, T.M., Lipowsky, R.: Self-organized density patterns of molecular motors in arrays of cytoskeletal filaments. Biophys. J. 88(5), 3118–3132 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.L2C, UMR 5221 CNRSUniversité Montpellier 2Montpellier Cedex 5France
  2. 2.DIMNP, UMR 5235 CNRSUniversité Montpellier 2 et Montpellier 1Montpellier Cedex 5France

Personalised recommendations