Skip to main content

Diffusion Measurements of Water and Polymers in Hydrogels by Pulsed Field Gradient NMR

  • Chapter
Nano/Micro Science and Technology in Biorheology
  • 808 Accesses

Abstract

The basic theory and techniques of diffusion measurements by pulsed field gradient NMR are described, and experimental results for solutions and gels of poly(N,N-dimethylacrylamide), carrageenans, agar , and agarose are introduced and analyzed to give physical pictures for the gels. Discussion of experimental results for water and probe diffusion in synthetic polymer and polysaccharide gels and solution was offered. Relaxation times for the macromolecules and water give information on tumbling motion. The diffusion coefficient of probe molecules in hydrocolloid systems provided the information on the translational mobility of molecules, which can be used to infer the structure of the gel network . By comparing the results with other experimental techniques, a clear picture emerges, with clear correspondence of the microscopic events, namely, aggregation, polymer immobilization, and subsequent effects on molecular flexibility and probe diffusion, with the macroscopic (bulk) events, namely, gelation. The hydrodynamic shielding length, ξ, which represents within the mean field hydrodynamic approach the mesh size of the network, as a parameter that determines D/D 0 of probe molecules, has been discussed in detail. This parameter ξ was used to describe quantitatively the evolving structure of the gel network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cukier R (1984) Diffusion of Brownian spheres in semidilute polymer solutions. Macromolecules 17:252–255

    Article  CAS  Google Scholar 

  2. Phillies GDJ, Malone C, Ullmann K, Ullmann GS, Rollings J, Yu L (1987) Probe diffusion in solutions of log-chain polyelectrolytes. Macromolecules 22:2280–2289

    Article  Google Scholar 

  3. Cameron RE, Jalil MA, Donald AM (1994) Diffusion of bovine serum-albumin in amylopectin gels measured using Fourier-Transform Infrared. Microspectrosc Macromol 27:2708–2713

    Article  CAS  Google Scholar 

  4. Matsukawa S, Ando I (1996) A study of self-diffusion of molecules in polymer gel by pulsed-gradient spin-echo 1H NMR. Macromolecules 29:7136

    Article  CAS  Google Scholar 

  5. Matsukawa S, Ando I (1997) Study of self-diffusion of molecules in polymer gel by pulsed-gradient spin-echo 1H NMR 2. Intermolecular hydrogen-bond interaction. Macromolecules 30:8310

    Article  CAS  Google Scholar 

  6. Matsukawa S, Ando I (1999) Study of self-diffusion of molecules in polymer gel by pulsed-gradient spin-echo 1H NMR. 3. Stearyl itaconimide/N, N-dimethylacrylamide copolymer gels. Macromolecules 32:1865

    Article  CAS  Google Scholar 

  7. Matsukawa S, Yasunaga H, Zhao C, Kuroki S, Kurosu H, Ando I (1999) Diffusion processes in polymer gels as studied by pulsed field-gradient spin-echo spectroscopy. Prog Polym Sci 24(7):995–1044

    Article  CAS  Google Scholar 

  8. Zhao Q, Matsukawa S (2012) Estimation of hydrodynamic screening length in κ-carrageenan aqueous system through probe diffusion using gradient. Polym J 44:901–906

    Article  CAS  Google Scholar 

  9. Zhao Q, Brenner T, Matsukawa S (2013) Molecular mobility and microscopic structure changes in κ-carrageenan solutions studied by gradient NMR. Carbohydr Polym 95:458–464

    Article  CAS  PubMed  Google Scholar 

  10. Dai B, Matsukawa S (2012) NMR studies of the gelation mechanism and molecular dynamics in agar solutions. Food Hydrocoll 26:181–186

    Article  CAS  Google Scholar 

  11. Dai B, Matsukawa S (2013) Elucidation of gelation mechanism and molecular interactions of agarose in solution by 1H-NMR. Carbohydr Res 365:38–45

    Google Scholar 

  12. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time dependent field gradient. J Chem Phys 42:288

    Article  CAS  Google Scholar 

  13. Karger J, Pfeifer H, Heink W (1988) Principles and applications of self-diffusion measurements by nuclear magnetic resonance. Adv Magn Reson 12:1

    Google Scholar 

  14. Callaghan PT (1991) Principles of nuclear magnetic resonance microscopy. Clarendon, Oxford, p 93

    Google Scholar 

  15. Price WS (1997) Pulsed field gradient NMR as a tool for studying translational diffusion, Part I. Basic theory. Concepts Magn Reson 9:299–336

    Article  CAS  Google Scholar 

  16. Price WS (2009) Diffusion and its measurements. In: NMR study of translational motion, 1st ed. Cambridge University Press, New York. pp 1–68

    Google Scholar 

  17. Langevin D, Rondelez FP (1978) Sedimentation of large colloidal particles through semidilute polymer solutions. Polymer 19:875–882

    Article  CAS  Google Scholar 

  18. Wheeler LM, Lodge TP (1989) Tracer diffusion of linear polystyrenes in dilute, semidilute and concentrated polyvinyl methyl ether solutions. Macromolecules 22:3399–3408

    Article  CAS  Google Scholar 

  19. Rotstein NA, Lodge TP (1992) Tracer diffusion of linear polystyrene in poly(vinyl methyl ether) gels. Macromolecules 25:1316–1325

    Article  CAS  Google Scholar 

  20. Nemoto N, Landry MR, Noh I, Kitano T, Wesson J, Yu H (1985) Concentration dependence of self diffusion coefficient by forced Rayleigh scattering: polystyrene in tertahydrofuran. Macromolecules 18:308–310

    Article  CAS  Google Scholar 

  21. de Gennes PG (1976) Dynamics of entangled polymer solution II. Inclusion of hydrodynamic interaction. Macromolecules 9:594–598

    Article  Google Scholar 

  22. Imeson AP (2000) Chapter 5: Carrageenan. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. Woodhead Publishing, Cambridge, pp 95–100

    Google Scholar 

  23. Makino K, Idenuma R, Murakami T, Ohshima H (2001) Design of a rate and time-programming drug release device using a hydrogel: pulsatile drug release from ĸ-carrageenan hydrogel device by surface erosion of the hydrogel. Colloids Surf B: Biointerfaces 20:355–359

    Article  CAS  PubMed  Google Scholar 

  24. Garcia AM, Ghaly ES (1996) Preliminary spherical agglomerates of water soluble drug using natural polymer and cross-linking technique. J Control Release 40:179–186

    Article  CAS  Google Scholar 

  25. Campanella L, Roversi R, Sammartino MP, Tomassetti M (1998) Hydrogen peroxide determination in pharmaceutical formulation and cosmetics using a new catalase biosensor. J Pharm Biomed Anal 18:105–116

    Article  CAS  PubMed  Google Scholar 

  26. Hjerde T, Smidsrød O, Christensen BE (1999) Analysis of the conformational properties of κ and ι-carrageenan by size-exclusion chromatography combined with low-angle laser light scattering. Biopolymers 49:71–80

    Article  CAS  Google Scholar 

  27. MacArtain P, Jacquier JC, Dawson KA (2003) Physical characteristics of calcium induced κ-carrageenan networks. Carbohydr Polym 53(4):395–400

    Article  CAS  Google Scholar 

  28. Mangione MR, Giacomazza D, Bulone D, Martorana V, Cavallaro G, San Biagio PL (2005) K+ and Na+ effects on the gelation properties of κ-carrageenan. Biophys Chem 113:129–135

    Article  CAS  PubMed  Google Scholar 

  29. Mangione MR, Giacomazza D, Bulone D, Martorana V, San Biagio PL (2003) Thermoreversible gelation of κ-carrageenan: relation between conformational transition and aggregation. Biophys Chem 104:95–105

    Article  CAS  PubMed  Google Scholar 

  30. Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB (2006) Stability improvement of alpha- amylase entrapped in kappa-carrageenan beads: Physicochemical characterization and optimization using composite index. Int J Pharm 312:1–14

    Article  CAS  PubMed  Google Scholar 

  31. Nono M, Nicolai T, Durand D (2010) Gel formation of mixtures of κ-carrageenan and sodium caseinate. Food Hydrocoll 25:750–757

    Article  Google Scholar 

  32. Rochas C, Rinaudo M (1984) Mechanism of gel formation in κ-carrageenan. Biopolymers 23:735–745

    Article  CAS  Google Scholar 

  33. Takemasa M, Chiba A (2001) Gelation mechanism of κ- and ι-carrageenan investigated by correlation between the strain-optical coefficient and the dynamic shear modulus. Macromolecules 34:7427–7434

    Article  CAS  Google Scholar 

  34. Walther B, Lorén N, Nydén M, Hermansson AM (2006) Influence of κ-carrageenan gel structures on the diffusion of probe molecules determined by transmission electron microscopy and NMR diffusometry. Langmuir 22:8221–8228

    Article  CAS  PubMed  Google Scholar 

  35. Lorén N, Shtykova L, Kidman S, Jarvoll P, Nydén M, Hermansson AM (2009) Dendrimer diffusion in κ-carrageenan gel structures. Biomacromolecules 10:275–284

    Article  PubMed  Google Scholar 

  36. Phillips RJ (2000) A hydrodynamic model for hindered diffusion of proteins and micelles in hydrogels. Biophys J 79:3350–3354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Amsden B (1998) Solute diffusion in hydrogels. An examination of the retardation effect. Polym Gels Networks 6:13–43

    Article  CAS  Google Scholar 

  38. Amsden B (1998) Solute diffusion in hydrogels. An examination of the retardation effect. Polym Gels Networks 6(13)

    Google Scholar 

  39. Mstsukawa S, Sagae D, Mogi A (2009) Molecular diffusion in polysaccharide gel systems as observed by NMR. Progr Colloid Polym Sci 136:171

    Google Scholar 

  40. Doi M, Edward SF (1986) The theory of polymer dynamics. Oxford University Press, New York

    Google Scholar 

  41. Nishinari K, Kohyama K, Williams PA, Phillips GO, Burchard W, Ogino K (1991) Solution properties of Pullulan. Macromolecules 24:5590

    Article  CAS  Google Scholar 

  42. Takahashi A, Sakai M, Kato T (1980) Melting temperature of thermally reversible gel: VI effect of branching on the sol–gel transition of polyethylene gels. Polym J 12:335

    Article  CAS  Google Scholar 

  43. Shimizu M, Brenner T, Liao RQ, Matsukawa S (2012) Diffusion of probe polymer in gellan gum solutions during gelation process studied by gradient NMR. S. Matsukawa. Food Hydrocoll 26:28

    Article  CAS  Google Scholar 

  44. Nussinovitch A (1997) Hydrocolloid applications: gum technology in the food and other industries, 1st edn. Chapman & Hall, London (Chapter 1)

    Book  Google Scholar 

  45. Arnott S, Fulmer S, Scott WE (1974) The agarose double helix and its function in agarose gel structure. J Mol Biol 90:269–284

    Article  CAS  PubMed  Google Scholar 

  46. Aymard P, Martin D, Plucknett K, Foster T, Clark A, Norton L (2001) Influence of thermal history on the structural and mechanical properties of agarose gels. Biopolymers 59:131–144

    Article  CAS  PubMed  Google Scholar 

  47. Matsukawa S, Sagae D, Mogi A (2009) Molecular diffusion in polysaccharide gel systems as observed by NMR. Progr Colloid Polym Sci 136:171–176

    CAS  Google Scholar 

  48. Price WS (2009) NMR studies of translational motion, 1st ed. Cambridge University Press, New York (chapter 7)

    Google Scholar 

  49. Déléris I, Andriot I, Gobet M, Moreau C, Souchon I, Guichard E (2010) Determination of aroma compound diffusion in model food systems: comparison of macroscopic and microscopic methodologies. J Food Eng 100:557–566

    Article  Google Scholar 

  50. Walderhaug H, Söderman O, Topgaard D (2010) Self-diffusion in polymer systems studied by magnetic field-gradient spin-echo NMR methods. Prog Nucl Magn Reson Spectrosc 56:406–425

    Article  CAS  PubMed  Google Scholar 

  51. Labropoulos KC, Niesz DE, Danforth SC, Kevrekidis PG (2002) Dynamic rheology of agar gels: theory and experiments. Part I. Development of a rheological model. Carbohydr Polym 50:393–406

    Article  CAS  Google Scholar 

  52. Norton IT, Goodall DM, Austen KRJ, Morris ER (1986) Dynamics of molecular organization in agarose sulfate. Biopolymers 25:1009–1029

    Article  CAS  Google Scholar 

  53. Guenet JM, Brulet A, Rochas C (1993) Agarose chain conformation in the sol state by neutron-scattering. Int J Biol Macromol 15:131–132

    Article  CAS  PubMed  Google Scholar 

  54. Ramzi M, Rochas C, Guenet JM (1998) Structure-properties relation for agarose thermoreversible gels in binary solvents. Macromolecules 31:6106–6111

    Article  CAS  Google Scholar 

  55. Foord SA, Atkins EDT (1989) New X-ray diffraction results from agarose: extended single helix structures and implications for gelation mechanism. Biopolymers 28:1345–1365

    Article  CAS  Google Scholar 

  56. Mohammed ZH, Hember MWN, Richardson RK, Morris ER (1998) Kinetic and equilibrium processes in the formation and melting of agarose gels. Carbohydr Polym 36:15–26

    Article  CAS  Google Scholar 

  57. Matsunaga N, Nagashima A (1983) Transport properties of liquid and gaseous D2O over a wide range of temperature and pressure. J Phys Chem Ref Data 12:933–966

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Matsukawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Matsukawa, S., Brenner, T. (2015). Diffusion Measurements of Water and Polymers in Hydrogels by Pulsed Field Gradient NMR. In: Kita, R., Dobashi, T. (eds) Nano/Micro Science and Technology in Biorheology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54886-7_6

Download citation

Publish with us

Policies and ethics