Skip to main content

Rheological Aspects of Conformational Change and Molecular Aggregation of Macromolecules

  • Chapter
Nano/Micro Science and Technology in Biorheology
  • 811 Accesses

Abstract

When the temperature of a dilute polymer solution is changed gradually far below the Θ point, the conformation of individual polymer chains changes from a random coil to a compact globular state (coil-globule transition), followed by intermolecular aggregation owing to phase separation. In this chapter, the coil-globule transition and the aggregation behavior in dilute solutions of typical neutral synthetic homopolymers, poly(N-isopropylacrylamide) (PNIPAM) and poly(methyl methacrylate) (PMMA), are reviewed, and some rheological aspects of the kinetics of chain collapse and chain aggregation are demonstrated. The applicability of the rheological concepts derived from the aggregation behavior of synthetic homopolymers to that of intrinsically disordered proteins (IDPs) is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An aqueous solution of water-soluble polymers shows an LCST-type behavior in many cases. However, a group of water-soluble polymers showing a UCST-type behavior has attracted much attention in recent years [30].

  2. 2.

    Note that phase diagrams of some polymer-solvent systems show both UCST- and LCST-type behaviors [31].

  3. 3.

    Although this chapter focuses mostly on homopolymers, introducing comonomers and the resultant copolymers or heteropolymers is also of great importance from the viewpoint of applications [10, 13].

References

  1. Grosberg AY, Khokhlov AR (1994) Statistical physics of macromolecules. AIP Press, New York

    Google Scholar 

  2. Flory PJ (1952) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  3. Hirokawa Y, Tanaka T (1984) J Chem Phys 81:6379

    Article  Google Scholar 

  4. Gil ES, Hudson SM (2004) Prog Polym Sci 29:1173–1222

    Article  CAS  Google Scholar 

  5. Hoffman AS, Stayton PS (2004) Macromol Symp 207:139–151

    Article  CAS  Google Scholar 

  6. Kikuchi A, Okano T (2002) Adv Drug Deliv Rev 54:53–77

    Article  CAS  PubMed  Google Scholar 

  7. Clark AH (1998) Gelation of globular proteins. In: Hill SE, Ledward DA, Mitchell JR (eds) Functional properties of food macromolecules. Aspen Publishers, Gaithersburg

    Google Scholar 

  8. Wang W (2005) Int J Pharm 289:1–30

    Article  CAS  PubMed  Google Scholar 

  9. Baysal BM, Karasz FE (2003) Macromol Theory Simul 12:627

    Article  CAS  Google Scholar 

  10. Aseyev VO, Tenhu H, Winnik FM (2006) Adv Polym Sci 196:1–85

    CAS  Google Scholar 

  11. Pappu RV, Wang X, Vitalis A et al (2008) Arch Biochem Biophys 469:132–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Tanford C (1966) Physical chemistry of macromolecules. Wiley, New York

    Google Scholar 

  13. Zhang G, Wu C (2005) Adv Polym Sci 195:1

    Google Scholar 

  14. Nakata M (1995) Phys Rev E 51:5770

    Article  CAS  Google Scholar 

  15. Maki Y, Sasaki N, Nakata M (2004) Macromolecules 37:5703–5709

    Article  CAS  Google Scholar 

  16. Nakata M, Nakagawa T (1997) Phys Rev E 56:3338

    Article  CAS  Google Scholar 

  17. Nakamura Y, Sasaki N, Nakata M (2001) Macromolecules 34:5992–6002

    Article  CAS  Google Scholar 

  18. Maki Y, Dobashi T, Nakata M (2007) J Chem Phys 126:134901

    Article  PubMed  CAS  Google Scholar 

  19. Nakata M, Nakagawa T (1999) J Chem Phys 110:2703

    Article  CAS  Google Scholar 

  20. Nakamura Y, Sasaki N, Nakata M (2003) J Chem Phys 118:3861

    Article  CAS  Google Scholar 

  21. Maki Y, Dobashi T (2012) Kobunshi Ronbunshu 69:373–381

    Article  CAS  Google Scholar 

  22. Nakata M, Nakamura Y, Maki Y (2004) Macromolecules 37:4917

    Article  CAS  Google Scholar 

  23. Nakata M, Nakamura Y, Sasaki N et al (2012) Phys Rev E 85:021802

    Article  CAS  Google Scholar 

  24. Nakata M, Nakagawa T, Nakamura Y et al (1999) J Chem Phys 110:2711

    Article  CAS  Google Scholar 

  25. Nakagawa T, Nakamura Y, Sasaki N et al (2001) Phys Rev E 63:031803

    Article  CAS  Google Scholar 

  26. Maki Y, Dobashi T, Nakata M (2008) Phys Rev E 78:041802

    Article  CAS  Google Scholar 

  27. Nakamura Y, Nakagawa T, Sasaki N et al (2001) Macromolecules 34:5984–5991

    Article  CAS  Google Scholar 

  28. Nakamura Y, Sasaki N, Nakata M (2002) Macromolecules 35:1365–1372

    Article  CAS  Google Scholar 

  29. Nakata M, Nakamura Y, Sasaki N (2007) Phys Rev E 76:041805

    Article  CAS  Google Scholar 

  30. Seuring J, Agarwal S (2012) Macromol Rapid Commun 33:1898–1920

    Article  CAS  PubMed  Google Scholar 

  31. Koningsveld R, Stockmayer WH, Nies E (2001) Polymer phase diagrams, a text book. Oxford University Press, Oxford

    Google Scholar 

  32. Stockmayer WH (1960) Makromol Chem 35:54

    Article  CAS  Google Scholar 

  33. Birshtein TM, Pryamitsyn VA (1991) Macromolecules 24:1554–1560

    Article  CAS  Google Scholar 

  34. Grosberg AY, Kuznetsov DV (1992) Macromolecules 25:1970–1979

    Article  CAS  Google Scholar 

  35. Grosberg AY, Kuznetsov DV (1992) Macromolecules 25:1996–2003

    Article  CAS  Google Scholar 

  36. Grosberg AY, Kuznetsov DV (1992) Macromolecules 25:1980–1990

    Article  CAS  Google Scholar 

  37. Lifshitz IM, Grosberg AY, Khokhlov AR (1978) Rev Mod Phys 50:683–713

    Article  CAS  Google Scholar 

  38. Sun ST, Nishio I, Swislow G et al (1980) J Chem Phys 73:5971–5975

    Article  CAS  Google Scholar 

  39. Park IH, Wang QW, Chu B (1987) Macromolecules 20:1965–1975

    Article  CAS  Google Scholar 

  40. Kubota K, Fujishige S, Ando I (1990) J Phys Chem 94:5154–5158

    Article  CAS  Google Scholar 

  41. Wu C, Zhou S (1995) Macromolecules 28:8381–8387

    Article  CAS  Google Scholar 

  42. Wang X, Qiu X, Wu C (1998) Macromolecules 31:2972–2976

    Article  CAS  Google Scholar 

  43. Burchard W (1996) Combined static and dynamic light scattering. In: Brown W (ed) Light scattering: principles and development. Clarendon, New York

    Google Scholar 

  44. Okada Y, Tanaka F (2005) Macromolecules 38:4465–4471

    Article  CAS  Google Scholar 

  45. Tanaka F, Koga T, Kojima H et al (2009) Macromolecules 42:1321–1330

    Article  CAS  Google Scholar 

  46. Witelski TP, Grosberg AY, Tanaka T (1998) J Chem Phys 108:9144–9149

    Article  CAS  Google Scholar 

  47. Abe F, Einaga Y, Yamakawa H (1995) Macromolecules 28:694

    Article  CAS  Google Scholar 

  48. Yamakawa H, Abe F, Einaga Y (1994) Macromolecules 27:3272

    Article  CAS  Google Scholar 

  49. Baysal BM, Kayaman N (1998) J Chem Phys 109:8701–8707

    Article  CAS  Google Scholar 

  50. Dogan M, Kuntman A (2000) Polym Int 49:1648–1652

    Article  CAS  Google Scholar 

  51. Kayaman N, Gürel EE, Baysal BM et al (2000) Polymer 41:1461–1468

    Article  CAS  Google Scholar 

  52. Kayaman N, Gürel EE, Baysal M et al (1999) Macromolecules 32:8399–8403

    Article  CAS  Google Scholar 

  53. de Gennes PG (1985) J Phys Lett 46:L-639

    Article  Google Scholar 

  54. Grosberg AY, Nechaev SK, Shakhnovich EI (1988) J Phys (France) 49:2095

    Article  CAS  Google Scholar 

  55. Buguin A, Brochart-Wyart F, de Gennes PG (1996) C R Acad Sci Ser IIb Mec Phys Chim Astron 322:741

    CAS  Google Scholar 

  56. Klushin LI (1998) J Chem Phys 108:7917

    Article  CAS  Google Scholar 

  57. Halperin PM, Goldbart PM (2000) Phys Rev E 61:565

    Article  CAS  Google Scholar 

  58. Byrne A, Kiernan P, Green D et al (1995) J Chem Phys 102:573

    Article  CAS  Google Scholar 

  59. Kuznetsov YA, Timoshenko EG, Dawson KA (1995) J Chem Phys 103:4807

    Article  CAS  Google Scholar 

  60. Kuznetsov YA, Timoshenko EG, Dawson KA (1996) J Chem Phys 104:3338

    Article  CAS  Google Scholar 

  61. Abrams CF, Lee N-K, Obukhov SP (2002) Europhys Lett 59:391–397

    Article  CAS  Google Scholar 

  62. Frisch T, Verga A (2002) Phys Rev E 66:041807

    Article  CAS  Google Scholar 

  63. Kikuchi N, Ryder JF, Poooley CM et al (2005) Phys Rev E 71:061804

    Article  CAS  Google Scholar 

  64. Kamata K, Araki T, Tanaka H (2009) Phys Rev Lett 102:108303

    Article  PubMed  CAS  Google Scholar 

  65. Chu B, Ying Q, Grosberg AY (1995) Macromolecules 28:180–189

    Article  CAS  Google Scholar 

  66. Xu J, Zhu X, Luo S et al (2006) Phys Rev Lett 96:027802

    Article  PubMed  CAS  Google Scholar 

  67. Zhang GZ, Wu C (2001) Phys Rev Lett 86:822

    Article  CAS  PubMed  Google Scholar 

  68. Ye X, Lu Y, Shen L et al (2007) Macromolecules 40:4750–4752

    Article  CAS  Google Scholar 

  69. Mansfield ML (2007) J Chem Phys 127:244902

    Article  PubMed  CAS  Google Scholar 

  70. Rabin Y, Grosberg AY, Tanaka T (1995) Europhys Lett 32:505

    Article  CAS  Google Scholar 

  71. Lee N-K, Abrams CF, Johner A et al (2003) Phys Rev Lett 90:225504

    Article  PubMed  CAS  Google Scholar 

  72. Lee N-K, Abrams CF, Johner A et al (2004) Macromolecules 37:4917

    Article  CAS  Google Scholar 

  73. Chu B, Ying Q (1996) Macromolecules 29:1824–1826

    Article  CAS  Google Scholar 

  74. Heskins M, Guillet JE (1968) J Macromol Sci Chem A2:1441

    Article  Google Scholar 

  75. Schild HG, Tirrell DA (1990) J Phys Chem 94:4352

    Article  CAS  Google Scholar 

  76. Fujishige S, Kubota K, Ando I (1989) J Phys Chem 93:3311–3313

    Article  CAS  Google Scholar 

  77. Van Durme K, Van Assche G, Van Mele B (2004) Macromolecules 37:9596

    Article  CAS  Google Scholar 

  78. Tong Z, Zeng F, Zheng X et al (1999) Macromolecules 32:4488–4490

    Article  CAS  Google Scholar 

  79. Xia Y, Yin X, Burke NAD, Stöver HDH (2005) Macromolecules 38:5937–5943

    Article  CAS  Google Scholar 

  80. Kawaguchi T, Kojima Y, Osa M et al (2008) Polym J 40:455

    Article  CAS  Google Scholar 

  81. Kawaguchi T, Kojima Y, Osa M et al (2008) Polym J 40:528

    Article  CAS  Google Scholar 

  82. Katsumoto Y, Kubosaki N (2008) Macromolecules 41:5955–5956

    Article  CAS  Google Scholar 

  83. Katsumoto Y, Kubosaki N, Miyata T (2010) J Chem Phys B 114:1044–1045

    Article  CAS  Google Scholar 

  84. Nishi K, Hiroi T, Hashimoto K et al (2013) Macromolecules 46:6225–6232

    Article  CAS  Google Scholar 

  85. McPhee W, Tam KC, Pelton R (1993) J Colloid Interface Sci 156:24

    Article  CAS  Google Scholar 

  86. Gorelov AV, Du Chesne A, Dawson KA (1997) Phys A 240:443–452

    Article  CAS  Google Scholar 

  87. Timoshenko EG, Kuznetsov YA (2001) Europhys Lett 53:322–327

    Article  CAS  Google Scholar 

  88. Aseyev V, Hietala S, Laukkanen A et al (2005) Polymer 46:7118–7131

    Article  CAS  Google Scholar 

  89. von Smoluchowski M (1916) Phys Z 17:585

    Google Scholar 

  90. von Smoluchowski M (1917) Z Phys Chem Stoechiom Verwandtschafts 92:129

    Google Scholar 

  91. Chan K, Pelton R, Zhang J (1999) Langmuir 15:4018–4020

    Article  CAS  Google Scholar 

  92. Tanaka H (1992) Macromolecules 25:6377–6380

    Article  CAS  Google Scholar 

  93. Tanaka H (2000) J Phys Condens Matter 12:R207–R264

    Article  CAS  Google Scholar 

  94. Chuang J, Grosberg AY, Tanaka T (2000) J Chem Phys 112:6434

    Article  CAS  Google Scholar 

  95. Kujawa P, Aseyev V, Tenhu H et al (2006) Macromolecules 39:7686–9693

    Article  CAS  Google Scholar 

  96. Pamies R, Zhu K, Kjøniksen A-L et al (2009) Polym Bull 62:487–502

    Article  CAS  Google Scholar 

  97. Kawaguchi T, Kobayashi K, Osa M et al (2009) J Phys Chem B 113:5440

    Article  CAS  PubMed  Google Scholar 

  98. Vicsek T (1989) Fractal growth phenomena. World Scientific, Singapore

    Book  Google Scholar 

  99. Chen W, Zhao Y, Jiang Y et al (2004) Chem Phys Chem 5:1745–1749

    CAS  PubMed  Google Scholar 

  100. Nicolai T, Durand D (2007) Curr Opin Colloid Interface Sci 12:23–28

    Article  CAS  Google Scholar 

  101. Uversky VN, Fink AL (2004) Biochim Biophys Acta 1698:131–153

    Article  CAS  PubMed  Google Scholar 

  102. Crick SL, Jayaraman M, Frieden C et al (2006) Proc Natl Acad Sci 103:16764–16769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Digambaranath JL, Campbell TV, Chung A et al (2010) Proteins 79:1427–1440

    Article  CAS  Google Scholar 

  104. Nekooki-Machida Y, Kurosawa M, Nukina N et al (2009) Proc Natl Acad Sci 24:9679–9684

    Article  Google Scholar 

  105. Chen S, Berthelier V, Yang W et al (2001) J Mol Biol 311:173–182

    Article  CAS  PubMed  Google Scholar 

  106. Chen S, Ferrone FA, Wetzel R (2002) Proc Natl Acad Sci 99:11884–11889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Walters RH, Murphy RM (2009) J Mol Biol 393:978–992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Vitalis A, Paapu RV (2011) Biophys Chem 159:14–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Masino L, Kelly G, Leonard K et al (2002) FEBS Lett 513:267–272

    Article  CAS  PubMed  Google Scholar 

  110. Khare SD, Ding F, Gwanmesia KN et al (2005) PLoS Comput Biol 1:230–235

    Article  CAS  PubMed  Google Scholar 

  111. Vitalis A, Wang X, Pappu RV (2007) Biophys J 93:1923–1937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Vitalis A, Wang X, Pappu RV (2008) J Mol Biol 384:279–297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Grosberg AY, Kuznetsov DV (1992) J Phys II 2:1327

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyuki Maki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Maki, Y. (2015). Rheological Aspects of Conformational Change and Molecular Aggregation of Macromolecules. In: Kita, R., Dobashi, T. (eds) Nano/Micro Science and Technology in Biorheology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54886-7_2

Download citation

Publish with us

Policies and ethics