Skip to main content

Dose Prescription and Calculation

  • Chapter
Stereotactic Body Radiation Therapy

Abstract

Stereotactic body radiation therapy (SBRT) is a promising treatment for early-stage non-small cell lung cancer (NSCLC) and provides a highly effective and safe therapy. As a result, SBRT has become one of the standard of care for delivering definitive treatment in medically inoperable patients. An important feature of modern SBRT are the supplementary techniques such as intensity modulated radiotherapy, volumetric modulated arc therapy, or flattened filter-free beams with image-guided radiotherapy (IGRT) and dose calculation algorithms, such as convolution superposition, the Monte Carlo and the grid-based Boltzmann equation solver (GBBS) method. These techniques and dose calculation algorithms reduce the errors or inaccuracies in the dose distribution. Therefore, the impact of a calculation algorithm on the dose distribution accuracy is an important issue. In this chapter, the dose prescription of SBRT is reviewed and the influence of dose calculation algorithms is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dosoretz DE, Galmarini D, Rubenstein JH, Katin MJ, Blitzer PH, Salenius SA, et al. Local control in medically inoperable lung cancer: an analysis of its importance in outcome and factors determining the probability of tumor eradication. Int J Radiat Oncol Biol Phys. 1993;27:507–16.

    Article  CAS  PubMed  Google Scholar 

  2. Kaskowitz L, Graham MV, Emami B, Halverson KJ, Rush C. Radiation therapy alone for stage I non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 1993;27:517–23.

    Article  CAS  PubMed  Google Scholar 

  3. Arimoto T, Usubuchi H, Matsuzawa T. Small volume multiple non-coplanar arc radiotherapy for tumors of the lung, head and neck and the abdominopelvic region. In: Lemke HU, editor. CAR’98 computer assisted radiology and surgery. Tokyo: Elsevier; 1998. p. 257–61.

    Google Scholar 

  4. Uematsu M, Shioda A, Suda A, Fukui T, Ozeki Y, Hama Y, et al. Computed tomography-guided frameless stereotactic radiotherapy for stage I non-small cell lung cancer: a 5-year experience. Int J Radiat Oncol Biol Phys. 2001;51:666–70.

    Article  CAS  PubMed  Google Scholar 

  5. Wulf J, Haedinger U, Oppitz U, Thiele W, Mueller G, Flentje M. Stereotactic radiotherapy for primary lung cancer and pulmonary metastases: a noninvasive treatment approach in medically inoperable patients. Int J Radiat Oncol Biol Phys. 2004;60:186–96.

    Article  PubMed  Google Scholar 

  6. Nagata Y, Takayama K, Matsuo Y, Norihisa Y, Mizowaki T, Sakamoto T, et al. Clinical outcomes of a phase I/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame. Int J Radiat Oncol Biol Phys. 2005;63:1427–31.

    Article  PubMed  Google Scholar 

  7. Xia T, Li H, Sun Q, Wang Y, Fan N, Yu Y, et al. Promising clinical outcome of stereotactic body radiation therapy for patients with inoperable Stage I/II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2006;66:117–25.

    Article  PubMed  Google Scholar 

  8. Baumann P, Nyman J, Hoyer M, Wennberg B, Gagliardi G, Lax I, et al. Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. J Clin Oncol. 2009;27:3290–6.

    Article  PubMed  Google Scholar 

  9. Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010;303:1070–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Nagata Y, Hiraoka M, Shibata T, Onishi H. A phase II trial of stereotactic body radiation therapy for operable T1N0M0 non-small cell lung cancer: Japan Clinical Oncology Group (JCOG0403). Int J Radiat Oncol Biol Phys. 2010;78:S27.

    Article  Google Scholar 

  11. A phase II trial of stereotactic body radiation therapy for operable T1N0M0 non-small cell lung cancer: Japan Clinical Oncology Group (JCOG0403)

    Google Scholar 

  12. Stereotactic body radiation therapy in treating patients with stage I or stage II non-small cell lung cancer that can be removed by surgery (RTOG 0618). http://clinicaltrials.Gov/ct2/show/nct00551369. Accessed 1 June 2011.

  13. International randomized study to compare Cyberknife stereotactic radiotherapy with surgical resection in stage I non-small cell lung cancer (STARS). http://clinicaltrials.Gov/ct2/show/nct00840749 (2011). Accessed 1 June 2011.

  14. Kappas C, Rosenwald JC. Quality control of inhomogeneity correction algorithms used in treatment planning systems. Int J Radiat Oncol Biol Phys. 1995;32(3):847–58.

    Article  CAS  PubMed  Google Scholar 

  15. ICRU. Prescribing, recording, and reporting photon beam therapy. ICRU Report volume 50. Bethesda: International Commission on Radiation Units and Measurements; 1993.

    Google Scholar 

  16. Papanikolaou N, Battista J, Boyer A, Kappas C, Klein E, Mackie TR, et al. AAPM Report No. 85: tissue inhomogeneity corrections for megavoltage photon beams: report of Task Group No. 65 of the Radiation Therapy Committee of the American Association of Physicists in Medicine; 2004.

    Google Scholar 

  17. Li XA, Yu C, Holmes T. A systematic evaluation of air cavity dose perturbation in megavoltage x-ray beams. Med Phys. 2000;27(5):1011–7.

    Article  CAS  PubMed  Google Scholar 

  18. Mohan R, Chui C, Lidofsky L. Differential pencil beam dose computation model for photons. Med Phys. 1986;13(1):64–73.

    Article  CAS  PubMed  Google Scholar 

  19. Ulmer W, Harder D. A triple Gaussian pencil beam model for photon beam treatment planning. Z Med Phys. 1995;5:25–30.

    Article  Google Scholar 

  20. Mackie TR, Scrimger JW, Battista JJ. A convolution method of calculating dose for 15-MV x rays. Med Phys. 1985;12(2):188–96.

    Article  CAS  PubMed  Google Scholar 

  21. Khan FM. Three-dimensional conformal radiation therapy. In: Khan FM, editor. The physics of radiation therapy. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2003. p. 467–80.

    Google Scholar 

  22. Lee EK, Fox T, Crocker I. Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2006;64(1):301–20. Epub 2005 Nov 14.

    Article  PubMed  Google Scholar 

  23. Ulmer W, Pyyry J, Kaissl W. A 3D photon superposition/convolution algorithm and its foundation on results of Monte Carlo calculations. Phys Med Biol. 2005;50(8):1767–90. Epub 2005 Apr 6.

    Article  CAS  PubMed  Google Scholar 

  24. Van Esch A, Tillikainen L, Pyykkonen J, Tenhunen M, Helminen H, Siljamäki S, et al. Testing of the analytical anisotropic algorithm for photon dose calculation. Med Phys. 2006;33(11):4130–48.

    Article  PubMed  Google Scholar 

  25. Rogers DW, Bielajew AF. Monte Carlo technique of electron and photon transport for radiation therapy. In: Kase KR, Bjarngard BE, Attix FH, editors. The dosimetry of ionizing radiation, vol. III. New York: Academic; 1990. p. 427–539.

    Chapter  Google Scholar 

  26. Mackie TR. Application of the Monte Carlo method in radiotherapy. In: Kase KR, Bjarngard BE, Attix FH, editors. The dosimetry of ionizing radiation, vol. III. New York: Academic; 1990. p. 541–620.

    Chapter  Google Scholar 

  27. Berger MJ, Seltzer SM. ETRAN, Monte Carlo code system for electron and photon transport through extended media. Radiation Shielding Information Center Report CCC-107. Oak Ridge: Oak Ridge National Laboratory; 1973.

    Google Scholar 

  28. Nelson WR, Hirayama H, Rogers DWO. The EGS4 Code System. Stanford Linear Accelerator Center, Repot SLAC-265, Stanford; 1985.

    Google Scholar 

  29. Rogers DW, Faddegon BA, Ding GX, Ma CM, We J, Mackie TR. BEAM: a Monte Carlo code to simulate radiotherapy treatment units. Med Phys. 1995;22(5):503–24.

    Article  CAS  PubMed  Google Scholar 

  30. Lewis EE, Miller WF. Computational methods of neutron transport. New York: Wiley; 1984.

    Google Scholar 

  31. Vassiliev ON, Wareing TA, Davis IM, McGhee J, Barnett D, Horton JL, et al. Feasibility of a multigroup deterministic solution method for three-dimensional radiotherapy dose calculations. Int J Radiat Oncol Biol Phys. 2008;72(1):220–7. doi:10.1016/j.ijrobp.2008.04.057.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Vassiliev ON, Wareing TA, McGhee J, Failla G, Salehpour MR, Mourtada F. Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams. Phys Med Biol. 2010;55(3):581–98. doi:10.1088/0031-9155/55/3/002. Epub 2010 Jan 7.

    Article  PubMed  Google Scholar 

  33. Han T, Mikell JK, Salehpour M, Mourtada F. Dosimetric comparison of Acuros XB deterministic radiation transport method with Monte Carlo and model-based convolution methods in heterogeneous media. Med Phys. 2011;38 Suppl 5:2651–64.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. Dosimetric evaluation of Acuros XB advanced dose calculation algorithm in heterogeneous media. Radiat Oncol. 2011;6:82.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Bush K, Gagne IM, Zavgorodni S, Ansbacher W, Beckham W. Dosimetric validation of Acuros XB with Monte Carlo methods for photon dose calculations. Med Phys. 2011;38 Suppl 4:2208–21.

    Article  CAS  PubMed  Google Scholar 

  36. Papanikolaou N, Battista J, Boyer A, Kappas C, Klein E, Mackie T, Sharpe M, Van Dyk J. AAPM Report No. 85: tissue inhomogeneity corrections for megavoltage photon beams. In: AAPM Report No. 85 Medical Physics, Madison; 2004. pp. 1–135.

    Google Scholar 

  37. Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B, et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010;37:4078–101.

    Article  PubMed  Google Scholar 

  38. Dempsey JF, Romeijn HE, Li JG, Low DA, Palta JR. A Fourier analysis of the dose grid resolution required for accurate IMRT fluence map optimization. Med Phys. 2005;32:380–8.

    Article  PubMed  Google Scholar 

  39. Chung H, Jin H, Palta J, Suh TS, Kim S. Dose variations with varying calculation grid size in head and neck IMRT. Phys Med Biol. 2006;51:4841–56.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiko Tateoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Tateoka, K. et al. (2015). Dose Prescription and Calculation. In: Nagata, Y. (eds) Stereotactic Body Radiation Therapy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54883-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54883-6_8

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54882-9

  • Online ISBN: 978-4-431-54883-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics