Skip to main content

Fixation

  • Chapter
  • 1381 Accesses

Abstract

Methods of stereotactic body irradiation and fixation have changed with the introduction of stereotactic body radiation therapy (SBRT). Compared to the brain, head, and neck cancer, it is difficult to target lesions with the body by stereotactic irradiation due to difficulty in achieving a stationary target. Lesions in the lung are particularly difficult to irradiate due to respiratory and other physiological movements. The method used for stereotactic body irradiation is set in each facility to maintain precise determination of tumor position. The four-dimension computed tomography (CT) scan method was introduced in our facility, making use of the improved performance of CT compared to the free-breathing irradiation using dynamic tumor tracking method.

This chapter discusses our clinical experience with this method focusing on (1) the requirements for the fixation device, (2) the characteristics of representative immobilization, (3) points that require attention for appropriate immobilization and setup, (4) fixation and setup error, (5) points that require attention regarding the dose at the time of immobilization, and (6) the interference of the fixation device with the gantry.

As stereotactic body irradiation requires a high degree of positional precision, a fixation device is used to increase precision and repeatability by maintaining the patient in the same position for the duration of the treatment.

Various immobilization devices are available, each of which has advantages and disadvantages. It is necessary to choose the appropriate device for the therapeutic method used in each facility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lax I. Target dose versus extratarget dose in stereotactic radiosurgery. Acta Oncol. 1993;32(4):453–7.

    Article  CAS  PubMed  Google Scholar 

  2. Lax I, Blomgren H, et al. Stereotactic radiotherapy of malignancies in the abdomen: methodological aspects. Acta Oncol. 1994;33(6):677–83.

    Article  CAS  PubMed  Google Scholar 

  3. Blomgren H, Lax I, et al. Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator: clinical experience of the first thirty-one patients. Acta Oncol. 1995;4(6):861–70.

    Article  Google Scholar 

  4. Blomgren H, Lax I, Goeranson H, et al. Radiosurgery for tumors in the body: clinical experience using a new method. J Radiosurg. 1998;1:63–74.

    Article  Google Scholar 

  5. Lax I, Blomgren H, Larson D, et al. Extracranial stereotactic radiosurgery of localized targets. J Radiosurg. 1998;1(2):135–48.

    Article  Google Scholar 

  6. Wulf J, Hadinger U, et al. Stereotactic radiotherapy of extracranial targets: CT-simulation and accuracy of treatment in the stereotactic body frame. Radiother Oncol. 2000;57:225–36.

    Article  CAS  PubMed  Google Scholar 

  7. Uematsu M, Fukui T, Shioda A, et al. A dual computed tomography and linear accelerator unit for stereotactic radiation therapy: a new approach without cranially fixated stereotactic frame. Int J Radiat Oncol Biol Phys. 1996;35:587–92.

    Article  CAS  PubMed  Google Scholar 

  8. Shirato H, Shimizu S, Kitamura K, et al. Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys. 2000;48(2):435–42.

    Article  CAS  PubMed  Google Scholar 

  9. Nagata Y, Negoro Y, Aoki T, et al. Clinical outcomes of 3D conformal hypofractionated single high-dose radiotherapy for one or two lung tumors using a stereotactic body frame. Int J Radiat Oncol Biol Phys. 2002;52:1041–6.

    Article  PubMed  Google Scholar 

  10. Seppenwoolde Y, Shirato H, Kitamura K, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53:822–34.

    Article  PubMed  Google Scholar 

  11. Harada T, Shirato H, Ogura S, et al. Real-time tumor-tracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy. Cancer. 2002;95:1720–7.

    Article  PubMed  Google Scholar 

  12. Onishi H, Kuriyama K, Komiyama T, et al. Clinical outcomes of stereotactic radiotherapy for stage Inon-small cell lung cancer using a novel irradiation technique: patient self-controlled breath-hold and beam switching using a combination of linear accelerator and CT scanner. Lung Cancer. 2004;45(1):45–55.

    Article  PubMed  Google Scholar 

  13. Kimura T, Hirokawa Y, Murakami Y, et al. Reproducibility of organ position using voluntary breath-hold method with spirometer for extracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 2004;60(4):1307–13.

    Article  PubMed  Google Scholar 

  14. Nagata Y, Takayama K, Matsuo Y, et al. Clinical outcomes of a phaseI/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame. Int J Radiat Oncol Biol Phys. 2005;63:1427–31.

    Article  PubMed  Google Scholar 

  15. Negoro Y, Nagata Y, Aoki T, et al. The effectiveness of an immobilization device in conformal radiotherapy for lung tumor: reduction of respiratory tumor movement and evaluation of daily set-up accuracy. Int J Radiat Oncol Biol Phys. 2001;50:889–98.

    Article  CAS  PubMed  Google Scholar 

  16. Koga S, Yano S, Okada T, et al. Stereotactic radiotherapy using a stereotactic body frame: research on effective irradiation angle and correcting dose. Jpn J Radiol Technol. 2001;57(11):1395–405.

    Google Scholar 

  17. Nakamura M, Narita Y, Matsuo Y, et al. Geometrical differences in target volumes between slow CT and 4D CT imaging in stereotactic body radiotherapy for lung tumors in the upper and middle lobe. Med Phys. 2008;35(9):4142–8.

    Article  PubMed  Google Scholar 

  18. Takayama K, Mizowaki T, Kokubo M, et al. Initial validations for pursuing irradiation using a gimbals tracking system. Radiother Oncol. 2009;93:45–9.

    Article  PubMed  Google Scholar 

  19. Matsuo Y, Sawada A, Ueki N, et al. An initial experience of dynamic tumor tracking irradiation with real-time monitoring using Vero4DRT (MHITM2000). Radiother Oncol. 2012;103:S64.

    Article  Google Scholar 

  20. Nakamura M, Mukumoto N, Ueki N, et al. Estimation of a tracking margin in surrogate signal-based dynamic tumor tracking irradiation with Vero4DRT. Int J Radiat Oncol Biol Phys. 2012;84:S851–2.

    Article  Google Scholar 

  21. Mukumoto N, Nakamura M, Sawada A, et al. Accuracy verification of infrared marker-based dynamic tumor-tracking irradiation using the gimbaled x-ray head of the Vero4DRT (MHI-TM2000). Med Phys. 2013;40:041706-1-9.

    Google Scholar 

  22. Akimoto M, Nakamura M, Mukumoto N, et al. Predictive uncertainty in infrared marker-based dynamic tumor tracking with Vero4DRT. Med Phys. 2013;40:091705-1-8.

    Google Scholar 

  23. Ueki N, Matsuo Y, Nakamura M, et al. Intra- and interfractional variations in geometric arrangement between lung tumours and implanted markers. Radiother Oncol. 2014;110:523–8.

    Article  PubMed  Google Scholar 

  24. Shiu AS, Chang EL, et al. Near simultaneous computed tomography image-guided stereotactic spinal radiotherapy: an emerging paradigm for achieving true stereotaxy. Int J Radiat Oncol Biol Phys. 2003;57(3):605–13.

    Article  PubMed  Google Scholar 

  25. Nevinny-Sticked M, Sweeney RA, et al. Reproducibility of patient positioning for fractionated extracranial stereotactic radiotherapy using a double-vacuum technique. Strahlenther Onkol. 2004;180(2):117–22.

    Article  Google Scholar 

  26. Geoffrey G, Hsiang-Hsuan M, Craig W, et al. Motion management in stereotactic body radiotherapy. J Nucl Med Radiat Ther. 2012;S6:012.

    Google Scholar 

  27. International Commission on radiation units and measurements (ICRU): Report 62, ICRU Publications; 1999.

    Google Scholar 

  28. Luo G, Gopalakrishnan M, Zhang Y, et al. Patient setup accuracy and immobilization errors during lung, spine, and liver stereotactic body radiation therapy delivery: preliminary experience using a body fix with dual vacuum immobilization and a robotic couch. Int J Radiat Oncol Biol Phys. 2011;81(2):S61–2.

    Article  Google Scholar 

  29. Fuss M, Salter BJ, Rassiah P. Repositioning accuracy of a commercially available double-vacuum whole body immobilization system for stereotactic body radiation therapy. Technol Cancer Res Treat. 2004;3(1):59–67.

    Article  PubMed  Google Scholar 

  30. Wang L, et al. Benefit of three-dimensional image-guided stereotactic localization in the hypofractionated treatment of lung cancer. Int J Radiat Oncol Biol Phys. 2006;66:738–47.

    Article  PubMed  Google Scholar 

  31. Inga S, Geoffrey H, Larry L, et al. Image-guided radiotherapy via daily online cone-beam CT substantially reduces margin requirements for stereotactic lung radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70(4):1045–56.

    Article  Google Scholar 

  32. Foster R, Meyer J, Iyengar P, et al. Localization accuracy and immobilization effectiveness of a stereotactic body frame for a variety of treatment sites. Int J Radiat Oncol Biol Phys. 2013;87(5):911–6.

    Article  PubMed  Google Scholar 

  33. Halperin R, Roa W, Field M, et al. Setup reproducibility in radiation therapy for lung cancer: a comparison between T-bar and expanded form immobilization devices. Int J Radiat Oncol Biol Phys. 1999;43(1):211–6.

    Article  CAS  PubMed  Google Scholar 

  34. Arthur J, Lee G, Heng L, et al. Dosimetric effects caused by couch tops and immobilization devices: report of AAPM Task Group 176. Med Phys. 2014;41(6):061501-1-30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Yano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Yano, S. (2015). Fixation. In: Nagata, Y. (eds) Stereotactic Body Radiation Therapy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54883-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54883-6_6

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54882-9

  • Online ISBN: 978-4-431-54883-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics