Skip to main content

Energy Metabolism in the Vertebrate Retina

  • Chapter
  • First Online:
Vertebrate Photoreceptors

Abstract

The fundamental need for efficient and well-controlled energy metabolism in living organisms is ubiquitous. However, vertebrate retinas have many fascinating adaptations that give them the ability to regulate energy production and anabolic activity to meet a unique set of metabolic demands.

Retinas have

  • An extraordinarily high rate of ATP consumption in darkness

  • A localized and highly specialized signal transduction apparatus that has an overwhelming and direct influence on energy demand

  • Exposure to light and O2 that create a high demand for membrane renewal

  • A higher rate of aerobic glycolysis than most other tissues

  • A laminated structure that facilitates localization of metabolic enzymes and metabolites

  • Synaptic terminals with a unique structure that allows recovery of neurotransmitter into presynaptic neurons at very high efficiency

  • Unusual mitochondrial morphology and distribution

  • Distinctive localization of creatine kinase and a specialized mechanism for distributing metabolic energy within the cell

  • An extensive database of genes linked to retinal degeneration: many of these may cause metabolic dysregulation and failure

  • Unique sensitivity to loss of mitochondrial isocitrate dehydrogenase activity

This review summarizes what is known about these extraordinary features in the context of the retina structure, its anabolic requirements, its metabolic requirements in light and darkness, the ways that it distributes metabolic energy, and, finally, the consequences of metabolic dysregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta ML, Fletcher EL, Azizoglu S, Foster LE, Farber DB, Kalloniatis M (2005) Early markers of retinal degeneration in rd/rd mice. Mol Vis 11:717–728

    PubMed  CAS  Google Scholar 

  • Adijanto J, Philp NJ (2012) The SLC16A family of monocarboxylate transporters (MCTs)–physiology and function in cellular metabolism, pH homeostasis, and fluid transport. Curr Top Membr 70:275–311. doi:10.1016/B978-0-12-394316-3.00009-0

    PubMed  CAS  Google Scholar 

  • Adler AJ, Klucznik KM (1982) Glycerol phosphate dehydrogenase in developing chick retina and brain. J Neurochem 38(4):909–915

    PubMed  CAS  Google Scholar 

  • Adler AJ, Southwick RE (1992) Distribution of glucose and lactate in the interphotoreceptor matrix. Ophthalmic Res 24(4):243–252

    PubMed  CAS  Google Scholar 

  • Agathocleous M, Love NK, Randlett O, Harris JJ, Liu J, Murray AJ, Harris WA (2012) Metabolic differentiation in the embryonic retina. Nat Cell Biol 14(8):859–864. doi:10.1038/ncb2531

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ames A III, Walseth TF, Heyman RA, Barad M, Graeff RM, Goldberg ND (1986) Light-induced Increases in cGMP metabolic flux correspond with electrical responses of photoreceptors. J Biol Chem 261:13034–13042

    PubMed  CAS  Google Scholar 

  • Ames A III, Li YY, Heher EC, Kimble CR (1992) Energy metabolism of rabbit retina as related to function: high cost of Na+ transport. J Neurosci 12(3):840–853

    PubMed  CAS  Google Scholar 

  • Anderson RE (1986) Phosphoinositide metabolism in photoreceptor cells. Neurochem Int 9(2):235–237

    PubMed  CAS  Google Scholar 

  • Anderson RE, Hollyfield JG (1981) Light stimulates the incorporation of inositol into phosphatidylinositol in the retina. Biochim Biophys Acta 665(3):619–622

    PubMed  CAS  Google Scholar 

  • Anderson RE, Maude MB (1972) Lipids of ocular tissues. 8. The effects of essential fatty acid deficiency on the phospholipids of the photoreceptor membranes of rat retina. Arch Biochem Biophys 151(1):270–276

    PubMed  CAS  Google Scholar 

  • Anderson RE, Kelleher PA, Maude MB (1980a) Metabolism of phosphatidylethanolamine in the frog retina. Biochim Biophys Acta 620(2):227–235

    PubMed  CAS  Google Scholar 

  • Anderson RE, Kelleher PA, Maude MB, Maida TM (1980b) Synthesis and turnover of lipid and protein components of frog retinal rod outer segments. Neurochem Int 1C:29–42

    PubMed  CAS  Google Scholar 

  • Anderson RE, Maude MB, Kelleher PA (1980c) Metabolism of phosphatidylinositol in the frog retina. Biochim Biophys Acta 620(2):236–246

    PubMed  CAS  Google Scholar 

  • Anderson RE, Maude MB, Kelleher PA, Maida TM, Basinger SF (1980d) Metabolism of phosphatidylcholine in the frog retina. Biochim Biophys Acta 620(2):212–226

    PubMed  CAS  Google Scholar 

  • Anderson RE, Maude MB, Bok D (2001) Low docosahexaenoic acid levels in rod outer segment membranes of mice with rds/peripherin and P216L peripherin mutations. Invest Ophthalmol Vis Sci 42(8):1715–1720

    PubMed  CAS  Google Scholar 

  • Andrews RM, Griffiths PG, Johnson MA, Turnbull DM (1999) Histochemical localisation of mitochondrial enzyme activity in human optic nerve and retina. Br J Ophthalmol 83(2):231–235

    PubMed Central  PubMed  CAS  Google Scholar 

  • Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94(8):4155–4160

    PubMed Central  PubMed  CAS  Google Scholar 

  • Aubert A, Costalat R (2007) Compartmentalization of brain energy metabolism between glia and neurons: insights from mathematical modeling. Glia 55(12):1272–1279. doi:10.1002/glia.20360

    PubMed  Google Scholar 

  • Azevedo AW, Rieke F (2011) Experimental protocols alter phototransduction: the implications for retinal processing at visual threshold. J Neurosci 31(10):3670–3682. doi:10.1523/JNEUROSCI.4750-10.2011

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ban Y, Rizzolo LJ (2000) Regulation of glucose transporters during development of the retinal pigment epithelium. Brain Res Dev Brain Res 121(1):89–95

    PubMed  CAS  Google Scholar 

  • Barabas P, Liu A, Xing W, Chen CK, Tong Z, Watt CB, Jones BW, Bernstein PS, Krizaj D (2013) Role of ELOVL4 and very long-chain polyunsaturated fatty acids in mouse models of Stargardt type 3 retinal degeneration. Proc Natl Acad Sci USA 110(13):5181–5186. doi:10.1073/pnas.1214707110

    PubMed Central  PubMed  CAS  Google Scholar 

  • Basavarajappa DK, Gupta VK, Dighe R, Rajala A, Rajala RV (2011) Phosphorylated Grb14 is an endogenous inhibitor of retinal protein tyrosine phosphatase 1B, and light-dependent activation of Src phosphorylates Grb14. Mol Cell Biol 31(19):3975–3987. doi:10.1128/MCB.05659-11

    PubMed Central  PubMed  CAS  Google Scholar 

  • Basinger SF, Hollyfield JG (1980) Control of rod shedding in the frog retina. Neurochem Int 1C:81–92

    PubMed  CAS  Google Scholar 

  • Basinger S, Hoffman R, Matthes M (1976) Photoreceptor shedding is initiated by light in the frog retina. Science 194(4269):1074–1076

    PubMed  CAS  Google Scholar 

  • Bazan NG (2007) Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture. Invest Ophthalmol Vis Sci 48(11):4866–4881; biography 4864–4865. doi:10.1167/iovs.07-0918

  • Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte–neuron metabolic cooperation. Cell Metab 14(6):724–738. doi:10.1016/j.cmet.2011.08.016

    PubMed  CAS  Google Scholar 

  • Bentmann A, Schmidt M, Reuss S, Wolfrum U, Hankeln T, Burmester T (2005) Divergent distribution in vascular and avascular mammalian retinae links neuroglobin to cellular respiration. J Biol Chem 280(21):20660–20665. doi:M501338200 [pii]10.1074/jbc.M501338200

    Google Scholar 

  • Bergersen L, Johannsson E, Veruki ML, Nagelhus EA, Halestrap A, Sejersted OM, Ottersen OP (1999) Cellular and subcellular expression of monocarboxylate transporters in the pigment epithelium and retina of the rat. Neuroscience 90(1):319–331

    PubMed  CAS  Google Scholar 

  • Bergersen L, Rafiki A, Ottersen OP (2002) Immunogold cytochemistry identifies specialized membrane domains for monocarboxylate transport in the central nervous system. Neurochem Res 27(1-2):89–96

    PubMed  CAS  Google Scholar 

  • Besharse JC, Dunis DA (1983) Rod photoreceptor disc shedding in eye cups: relationship to bicarbonate and amino acids. Exp Eye Res 36(4):567–579

    PubMed  CAS  Google Scholar 

  • Besharse JC, Hollyfield JG (1979) Turnover of mouse photoreceptor outer segments in constant light and darkness. Invest Ophthalmol Vis Sci 18(10):1019–1024

    PubMed  CAS  Google Scholar 

  • Besharse C, Terrill RO, Dunis DA (1980) Light-evoked disc shedding by rod photoreceptors in vitro: relationship to medium bicarbonate concentration. Invest Ophthalmol Vis Sci 19(12):1512–1517

    PubMed  CAS  Google Scholar 

  • Bianchini P, Calzia D, Ravera S, Candiano G, Bachi A, Morelli A, Bruschi M, Pepe IM, Diaspro A, Panfoli I (2008) Live imaging of mammalian retina: rod outer segments are stained by conventional mitochondrial dyes. J Biomed Opt 13(5):054017. doi:10.1117/1.2982528

    PubMed  Google Scholar 

  • Bibb C, Young RW (1974a) Renewal of fatty acids in the membranes of visual cell outer segments. J Cell Biol 61(2):327–343

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bibb C, Young RW (1974b) Renewal of glycerol in the visual cells and pigment epithelium of the frog retina. J Cell Biol 62(2):378–389

    PubMed Central  PubMed  CAS  Google Scholar 

  • Biedermann B, Bringmann A, Reichenbach A (2002) High-affinity GABA uptake in retinal glial (Müller) cells of the guinea pig: electrophysiological characterization, immunohistochemical localization, and modeling of efficiency. Glia 39(3):217–228. doi:10.1002/glia.10097

    PubMed  Google Scholar 

  • Bok D (1993) The retinal pigment epithelium: a versatile partner in vision. J Cell Sci Suppl 17:189–195

    PubMed  CAS  Google Scholar 

  • Bok D, Hall MO (1971) The role of the pigment epithelium in the etiology of inherited retinal dystrophy in the rat. J Cell Biol 49(3):664–682

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bringmann A, Pannicke T, Biedermann B, Francke M, Iandiev I, Grosche J, Wiedemann P, Albrecht J, Reichenbach A (2009) Role of retinal glial cells in neurotransmitter uptake and metabolism. Neurochem Int 54(3-4):143–160. doi:10.1016/j.neuint.2008.10.014

    PubMed  CAS  Google Scholar 

  • Bui BV, Kalloniatis M, Vingrys AJ (2003) The contribution of glycolytic and oxidative pathways to retinal photoreceptor function. Invest Ophthalmol Vis Sci 44:2708–2715

    PubMed  Google Scholar 

  • Bui BV, Hu RG, Acosta ML, Donaldson P, Vingrys AJ, Kalloniatis M (2009) Glutamate metabolic pathways and retinal function. J Neurochem 111(2):589–599. doi:10.1111/j.1471-4159.2009.06354.x

    PubMed  CAS  Google Scholar 

  • Buono RJ, Sheffield JB (1991) Changes in expression and distribution of lactate dehydrogenase isoenzymes in the developing chick retina. Exp Eye Res 53(2):199–204

    PubMed  CAS  Google Scholar 

  • Burkhardt DA (1994) Light adaptation and photopigment bleaching in cone photoreceptors in situ in the retina of the turtle. J Neurosci 14:1091–1105

    PubMed  CAS  Google Scholar 

  • Caffe AR, Von Schantz M, Szel A, Voogd J, Van Veen T (1994) Distribution of Purkinje cell-specific Zebrin-II/aldolase C immunoreactivity in the mouse, rat, rabbit, and human retina. J Comp Neurol 348(2):291–297. doi:10.1002/cne.903480210

    PubMed  CAS  Google Scholar 

  • Calzia D, Barabino S, Bianchini P, Garbarino G, Oneto M, Caicci F, Diaspro A, Tacchetti C, Manni L, Candiani S, Ravera S, Morelli A, Enrico Traverso C, Panfoli I (2013) New findings in ATP supply in rod outer segments: insights for retinopathies. Biol Cell 105(8):345–358. doi:10.1111/boc.201300003

    PubMed  CAS  Google Scholar 

  • Campbell M, Humphries P (2012) The blood–retina barrier: tight junctions and barrier modulation. Adv Exp Med Biol 763:70–84

    PubMed  CAS  Google Scholar 

  • Chertov AO, Holzhausen L, Kuok IT, Couron D, Parker E, Linton JD, Sadilek M, Sweet IR, Hurley JB (2011) Roles of glucose in photoreceptor survival. J Biol Chem 286(40):34700–34711. doi:10.1074/jbc.M111.279752

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chidlow G, Wood JP, Graham M, Osborne NN (2005) Expression of monocarboxylate transporters in rat ocular tissues. Am J Physiol Cell Physiol 288(2):C416–C428. doi:10.1152/ajpcell.00037.2004

    PubMed  CAS  Google Scholar 

  • Cohen LH, Noell WK (1960) Glucose catabolism of rabbit retina before and after development of visual function. J Neurochem 5:253–276

    PubMed  CAS  Google Scholar 

  • Contreras L, Satrustegui J (2009) Calcium signaling in brain mitochondria: interplay of malate aspartate NADH shuttle and calcium uniporter/mitochondrial dehydrogenase pathways. J Biol Chem 284(11):7091–7099. doi:M808066200 [pii]10.1074/jbc.M808066200

    Google Scholar 

  • Contreras L, Gomez-Puertas P, Iijima M, Kobayashi K, Saheki T, Satrustegui J (2007) Ca2+ activation kinetics of the two aspartate-glutamate mitochondrial carriers, aralar and citrin: role in the heart malate-aspartate NADH shuttle. J Biol Chem 282(10):7098–7106. doi:10.1074/jbc.M610491200

    PubMed  CAS  Google Scholar 

  • Cooper AJ, McDonald JM, Gelbard AS, Gledhill RF, Duffy TE (1979) The metabolic fate of 13N-labeled ammonia in rat brain. J Biol Chem 254(12):4982–4992

    PubMed  CAS  Google Scholar 

  • Cooper LL, Hansen RM, Darras BT, Korson M, Dougherty FE, Shoffner JM, Fulton AB (2002) Rod photoreceptor function in children with mitochondrial disorders. Arch Ophthalmol 120(8):1055–1062

    PubMed  Google Scholar 

  • Cornwall MC, Tsina E, Crouch RK, Wiggert B, Chen C, Koutalos Y (2003) Regulation of the visual cycle: retinol dehydrogenase and retinol fluorescence measurements in vertebrate retina. Adv Exp Med Biol 533:353–360

    PubMed  CAS  Google Scholar 

  • Cringle SJ, Yu DY, Alder V, Su EN (1999) Light and choroidal PO2 modulation of intraretinal oxygen levels in an avascular retina. Invest Opthalmol Vis Sci 40:2307–2313

    CAS  Google Scholar 

  • Cringle SJ, Yu DY, Yu PK, Su EN (2002) Intraretinal oxygen consumption in the rat in vivo. Invest Ophthalmol Vis Sci 43(6):1922–1927

    PubMed  Google Scholar 

  • Crowder RJ, Freeman RS (1998) Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons. J Neurosci 18(8):2933–2943

    PubMed  CAS  Google Scholar 

  • Cunha-Vaz J, Bernardes R, Lobo C (2011) Blood-retinal barrier. Eur J Ophthalmol 21(suppl 6):S3–S9. doi:10.5301/EJO.2010.6049

    PubMed  Google Scholar 

  • Currie JR, Hollyfield JG, Rayborn ME (1978) Rod outer segments elongate in constant light: darkness is required for normal shedding. Vis Res 18(8):995–1003

    PubMed  CAS  Google Scholar 

  • D’Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM, Vollrath D (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9(4):645–651

    PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    PubMed  CAS  Google Scholar 

  • Daniele LL, Sauer B, Gallagher SM, Pugh EN Jr, Philp NJ (2008) Altered visual function in monocarboxylate transporter 3 (Slc16a8) knockout mice. Am J Physiol Cell Physiol 295(2):C451–C457. doi:10.1152/ajpcell.00124.2008

    PubMed Central  PubMed  CAS  Google Scholar 

  • de Azeredo FA, Lust WD, Passonneau JV (1981) Light-induced changes in energy metabolites, guanine nucleotides, and guanylate cyclase within frog retinal layers. J Biol Chem 256(6):2731–2735

    PubMed  Google Scholar 

  • del Arco A, Satrustegui J (1998) Molecular cloning of Aralar, a new member of the mitochondrial carrier superfamily that binds calcium and is present in human muscle and brain. J Biol Chem 273(36):23327–23334

    PubMed  Google Scholar 

  • Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787(11):1309–1316. doi:10.1016/j.bbabio.2009.01.005

    PubMed  CAS  Google Scholar 

  • Deora AA, Philp N, Hu J, Bok D, Rodriguez-Boulan E (2005) Mechanisms regulating tissue-specific polarity of monocarboxylate transporters and their chaperone CD147 in kidney and retinal epithelia. Proc Natl Acad Sci USA 102(45):16245–16250. doi:10.1073/pnas.0504419102

    PubMed Central  PubMed  CAS  Google Scholar 

  • Derouiche A, Rauen T (1995) Coincidence of l-glutamate/l-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia: evidence for coupling of GLAST and GS in transmitter clearance. J Neurosci Res 42(1):131–143. doi:10.1002/jnr.490420115

    PubMed  CAS  Google Scholar 

  • Dick E (1984) Enzymes of energy metabolism in the mudpuppy retina. J Neurochem 43(4):1124–1131

    PubMed  CAS  Google Scholar 

  • Dimmer KS, Friedrich B, Lang F, Deitmer JW, Broer S (2000) The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J 350(pt 1):219–227

    PubMed Central  PubMed  CAS  Google Scholar 

  • DiNuzzo M, Gili T, Maraviglia B, Giove F (2011) Modeling the contribution of neuron–astrocyte cross talk to slow blood oxygenation level-dependent signal oscillations. J Neurophysiol 106(6):3010–3018. doi:10.1152/jn.00416.2011jn.00416.2011 [pii]

    Google Scholar 

  • Dudley PA, Anderson RE (1978) Phospholipid transfer protein from bovine retina with high activity towards retinal rod disc membranes. FEBS Lett 95(1):57–60

    PubMed  CAS  Google Scholar 

  • Eliasof S, Arriza JL, Leighton BH, Kavanaugh MP, Amara SG (1998) Excitatory amino acid transporters of the salamander retina: identification, localization, and function. J Neurosci 18(2):698–712

    PubMed  CAS  Google Scholar 

  • Engelmann K, Valtink M (2004) RPE cell cultivation. Graefes Arch Clin Exp Ophthalmol 242(1):65–67. doi:10.1007/s00417-003-0811-9

    PubMed  Google Scholar 

  • Etingof RN (2001) Purine biosynthesis de novo in the retina: evolutionary aspects. Zh Evol Biokhim Fiziol 37(1):3–9

    PubMed  CAS  Google Scholar 

  • Feller SE, Gawrisch K (2005) Properties of docosahexaenoic-acid-containing lipids and their influence on the function of rhodopsin. Curr Opin Struct Biol 15(4):416–422. doi:10.1016/j.sbi.2005.07.002

    PubMed  CAS  Google Scholar 

  • Fliesler SJ, Bretillon L (2010) The ins and outs of cholesterol in the vertebrate retina. J Lipid Res 51(12):3399–3413. doi:10.1194/jlr.R010538

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fliesler SJ, Richards MJ, Miller CY, McKay S, Winkler BS (1997) In vitro metabolic competence of the frog retina: effects of glucose and oxygen deprivation. Exp Eye Res 64(5):683–692. doi:10.1006/exer.1996.0281

    PubMed  CAS  Google Scholar 

  • Fyk-Kolodziej B, Qin P, Dzhagaryan A, Pourcho RG (2004) Differential cellular and subcellular distribution of glutamate transporters in the cat retina. Vis Neurosci 21(4):551–565. doi:10.1017/S0952523804214067

    PubMed  Google Scholar 

  • Gebhard R (1991) Cytochemical demonstration of aspartate aminotransferase activity in the rat retina. Brain Res 539(2):337–341

    PubMed  CAS  Google Scholar 

  • Gebhard R (1992) Histochemical demonstration of glutamate dehydrogenase and phosphate-activated glutaminase activities in semithin sections of the rat retina. Histochemistry 97(1):101–103

    PubMed  CAS  Google Scholar 

  • Gellerich FN, Gizatullina Z, Arandarcikaite O, Jerzembek D, Vielhaber S, Seppet E, Striggow F (2009) Extramitochondrial Ca2+ in the nanomolar range regulates glutamate-dependent oxidative phosphorylation on demand. PloS One 4(12):e8181. doi:10.1371/journal.pone.0008181

    PubMed Central  PubMed  Google Scholar 

  • Gellerich FN, Gizatullina Z, Trumbeckaite S, Nguyen HP, Pallas T, Arandarcikaite O, Vielhaber S, Seppet E, Striggow F (2010) The regulation of OXPHOS by extramitochondrial calcium. Biochim Biophys Acta 1797(6-7):1018–1027. doi:10.1016/j.bbabio.2010.02.005

    PubMed  CAS  Google Scholar 

  • Gellerich FN, Gizatullina Z, Trumbekaite S, Korzeniewski B, Gaynutdinov T, Seppet E, Vielhaber S, Heinze HJ, Striggow F (2012) Cytosolic Ca2+ regulates the energization of isolated brain mitochondria by formation of pyruvate through the malate-aspartate shuttle. Biochem J 443(3):747–755. doi:10.1042/BJ20110765

    PubMed  CAS  Google Scholar 

  • Gerhart DZ, Leino RL, Drewes LR (1999) Distribution of monocarboxylate transporters MCT1 and MCT2 in rat retina. Neuroscience 92(1):367–375. doi:S0306-4522(98)00699-X [pii]

    Google Scholar 

  • German OL, Insua MF, Gentili C, Rotstein NP, Politi LE (2006) Docosahexaenoic acid prevents apoptosis of retina photoreceptors by activating the ERK/MAPK pathway. J Neurochem 98(5):1507–1520. doi:10.1111/j.1471-4159.2006.04061.x

    PubMed  CAS  Google Scholar 

  • Ghalayini AJ, Anderson RE (1995) Light adaptation of bovine retinas in situ stimulates phosphatidylinositol synthesis in rod outer segments in vitro. Curr Eye Res 14(11):1025–1029

    PubMed  CAS  Google Scholar 

  • Gordon WC, Bazan NG (1993) Visualization of [3H]docosahexaenoic acid trafficking through photoreceptors and retinal pigment epithelium by electron microscopic autoradiography. Invest Ophthalmol Vis Sci 34(8):2402–2411

    PubMed  CAS  Google Scholar 

  • Gospe SM 3rd, Baker SA, Arshavsky VY (2010) Facilitative glucose transporter Glut1 is actively excluded from rod outer segments. J Cell Sci 123(pt 21):3639–3644. doi:10.1242/jcs.072389jcs.072389 [pii]

    Google Scholar 

  • Gray-Keller MP, Detwiler PB (1994) The calcium feedback signal in the phototransduction cascade of vertebrate rods. Neuron 13(4):849–861

    PubMed  CAS  Google Scholar 

  • Graymore CN, Tansley K, Kerly M (1959) Metabolism of the developing retina. 2. The effect of an inherited retinal degeneration on the development of glycolysis in the rat retina. Biochem J 72:459–461

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gronlund MA, Honarvar AK, Andersson S, Moslemi AR, Oldfors A, Holme E, Tulinius M, Darin N (2010) Ophthalmological findings in children and young adults with genetically verified mitochondrial disease. Br J Ophthalmol 94(1):121–127. doi:10.1136/bjo.2008.154187

    PubMed  CAS  Google Scholar 

  • Guido ME, Garbarino Pico E, Caputto BL (2001) Circadian regulation of phospholipid metabolism in retinal photoreceptors and ganglion cells. J Neurochem 76(3):835–845

    PubMed  CAS  Google Scholar 

  • Hajkova D, Imanishi Y, Palamalai V, Rao KC, Yuan C, Sheng Q, Tang H, Zeng R, Darrow RM, Organisciak DT, Miyagi M (2010) Proteomic changes in the photoreceptor outer segment upon intense light exposure. J Proteome Res 9(2):1173–1181. doi:10.1021/pr900819k

    PubMed Central  PubMed  CAS  Google Scholar 

  • Halestrap AP, Wilson MC (2012) The monocarboxylate transporter family–role and regulation. IUBMB Life 64(2):109–119. doi:10.1002/iub.572

    PubMed  CAS  Google Scholar 

  • Hamann S, Kiilgaard JF, la Cour M, Prause JU, Zeuthen T (2003) Cotransport of H+, lactate, and H2O in porcine retinal pigment epithelial cells. Exp Eye Res 76(4):493–504

    PubMed  CAS  Google Scholar 

  • Harada T, Harada C, Kohsaka S, Wada E, Yoshida K, Ohno S, Mamada H, Tanaka K, Parada LF, Wada K (2002) Microglia–Muller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J Neurosci 22(21):9228–9236

    PubMed  CAS  Google Scholar 

  • Harik SI, Kalaria RN, Whitney PM, Andersson L, Lundahl P, Ledbetter SR, Perry G (1990) Glucose transporters are abundant in cells with “occluding” junctions at the blood–eye barriers. Proc Natl Acad Sci USA 87(11):4261–4264

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hartong DT, Dange M, McGee TL, Berson EL, Dryja TP, Colman RF (2008) Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle. Nat Genet 40(10):1230–1234. doi:10.1038/ng.223

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hasegawa J, Obara T, Tanaka K, Tachibana M (2006) High-density presynaptic transporters are required for glutamate removal from the first visual synapse. Neuron 50(1):63–74. doi:S0896-6273(06)00164-4 [pii]10.1016/j.neuron.2006.02.022

    Google Scholar 

  • Hawkins RA, O’Kane RL, Simpson IA, Vina JR (2006) Structure of the blood–brain barrier and its role in the transport of amino acids. J Nutr 136(1 suppl):218S–226S

    PubMed  CAS  Google Scholar 

  • Hollyfield JG, Basinger SF (1980) RNA metabolism in the retina in relation to cyclic lighting. Vis Res 20(12):1151–1155

    PubMed  CAS  Google Scholar 

  • Hollyfield JG, Rayborn ME (1979) Photoreceptor outer segment development: light and dark regulate the rate of membrane addition and loss. Invest Ophthalmol Vis Sci 18(2):117–132

    PubMed  CAS  Google Scholar 

  • Hollyfield JG, Rayborn ME, Verner GE, Maude MB, Anderson RE (1982) Membrane addition to rod photoreceptor outer segments: light stimulates membrane assembly in the absence of increased membrane biosynthesis. Invest Ophthalmol Vis Sci 22(4):417–427

    PubMed  CAS  Google Scholar 

  • Hsu SC, Molday RS (1991) Glycolytic enzymes and a GLUT-1 glucose transporter in the outer segments of rod and cone photoreceptor cells. J Biol Chem 266(32):21745–21752

    PubMed  CAS  Google Scholar 

  • Hung YP, Albeck JG, Tantama M, Yellen G (2011) Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor. Cell Metab 14(4):545–554. doi:10.1016/j.cmet.2011.08.012

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ishikawa T (1986) On the stability of DNA in photoreceptor cells of rat retina. Cell Tissue Res 243(2):445–448

    PubMed  CAS  Google Scholar 

  • Ishikawa T, Yamada E (1969) Atypical mitochondria in the ellipsoid of the photoreceptor cells of vertebrate retinas. Invest Ophthalmol 8(3):302–316

    PubMed  CAS  Google Scholar 

  • Jablonski MM, Tombran-Tink J, Mrazek DA, Iannaccone A (2000) Pigment epithelium-derived factor supports normal development of photoreceptor neurons and opsin expression after retinal pigment epithelium removal. J Neurosci 20(19):7149–7157

    PubMed  CAS  Google Scholar 

  • Jarrett SG, Boulton ME (2012) Consequences of oxidative stress in age-related macular degeneration. Mol Aspect Med 33(4):399–417. doi:10.1016/j.mam.2012.03.009

    CAS  Google Scholar 

  • Johnson NF (1977) Retinal glycogen content during ischaemia. Albrecht Von Graefes Arch Klin Exp Ophthalmol 203(3-4):271–282

    PubMed  CAS  Google Scholar 

  • Johnson JE Jr, Perkins GA, Giddabasappa A, Chaney S, Xiao W, White AD, Brown JM, Waggoner J, Ellisman MH, Fox DA (2007) Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses. Mol Vis 13:887–919. doi:v13/a97 [pii]

    Google Scholar 

  • Jones DP (1984) Effect of mitochondrial clustering on O2 supply in hepatocytes. Am J Physiol 247(1 pt 1):C83–C89

    PubMed  CAS  Google Scholar 

  • Jones BW, Kondo M, Terasaki H, Watt CB, Rapp K, Anderson J, Lin Y, Shaw MV, Yang JH, Marc RE (2011) Retinal remodeling in the Tg P347L rabbit, a large-eye model of retinal degeneration. J Comp Neurol 519(14):2713–2733. doi:10.1002/cne.22703

    PubMed Central  PubMed  CAS  Google Scholar 

  • Karl A, Wurm A, Pannicke T, Krugel K, Obara-Michlewska M, Wiedemann P, Reichenbach A, Albrecht J, Bringmann A (2011) Synergistic action of hypoosmolarity and glutamine in inducing acute swelling of retinal glial (Müller) cells. Glia 59(2):256–266. doi:10.1002/glia.21095

    PubMed  Google Scholar 

  • Kawamura S, Tachibanaki S (2008) Rod and cone photoreceptors: molecular basis of the difference in their physiology. Comp Biochem Physiol A Mol Integr Physiol 150:369–377

    PubMed  Google Scholar 

  • Kay P, Yang YC, Paraoan L (2013) Directional protein secretion by the retinal pigment epithelium: roles in retinal health and the development of age-related macular degeneration. J Cell Mol Med 17(7):833–843. doi:10.1111/jcmm.12070

    PubMed  CAS  Google Scholar 

  • Keen H, Chlouverakis C (1965) Metabolism of isolated rat retina. The role of non-esterified fatty acid. Biochem J 94:488–493

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kenney MC, Hertzog D, Chak G, Atilano SR, Khatibi N, Soe K, Nobe A, Yang E, Chwa M, Zhu F, Memarzadeh M, King J, Langberg J, Small K, Nesburn AB, Boyer DS, Udar N (2013) Mitochondrial DNA haplogroups confer differences in risk for age-related macular degeneration: a case control study. BMC Med Genet 14:4. doi:10.1186/1471-2350-14-4

    PubMed Central  PubMed  CAS  Google Scholar 

  • Krizaj D (2012) Calcium stores in vertebrate photoreceptors. Adv Exp Med Biol 740:873–889. doi:10.1007/978-94-007-2888-2_39

    PubMed Central  PubMed  CAS  Google Scholar 

  • Krizaj D, Lai FA, Copenhagen DR (2003) Ryanodine stores and calcium regulation in the inner segments of salamander rods and cones. J Physiol (Lond) 547(pt 3):761–774. doi:10.1113/jphysiol.2002.0356832002.035683 [pii]

    Google Scholar 

  • Kumagai AK, Glasgow BJ, Pardridge WM (1994) GLUT1 glucose transporter expression in the diabetic and nondiabetic human eye. Invest Ophthalmol Vis Sci 35(6):2887–2894

    PubMed  CAS  Google Scholar 

  • Kuwabara T, Cogan DG (1961) Retinal glycogen. Arch Ophthalmol 66:680–688

    PubMed  CAS  Google Scholar 

  • Kwok MC, Holopainen JM, Molday LL, Foster LJ, Molday RS (2008) Proteomics of photoreceptor outer segments identifies a subset of SNARE and Rab proteins implicated in membrane vesicle trafficking and fusion. Mol Cell Proteomics 7(6):1053–1066. doi:10.1074/mcp.M700571-MCP200

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lamb TD, Collin SP, Pugh EN Jr (2007) Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci 8(12):960–976. doi:10.1038/nrn2283

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lasansky A (1973) Organization of the outer synaptic layer in the retina of the larval tiger salamander. Philos Trans R Soc Lond B Biol Sci 265(872):471–489

    PubMed  CAS  Google Scholar 

  • LaVail MM (1976a) Rod outer segment disc shedding in relation to cyclic lighting. Exp Eye Res 23(2):277–280

    PubMed  CAS  Google Scholar 

  • LaVail MM (1976b) Rod outer segment disk shedding in rat retina: relationship to cyclic lighting. Science 194(4269):1071–1074

    PubMed  CAS  Google Scholar 

  • Lee A, Anderson AR, Stevens M, Beasley S, Barnett NL, Pow DV (2013) Excitatory amino acid transporter 5 is widely expressed in peripheral tissues. Eur J Histochem 57(1):e11. doi:10.4081/ejh.2013.e11

    PubMed Central  PubMed  CAS  Google Scholar 

  • Li SS, Pan YE, Sharief FS, Evans MJ, Lin MF, Clinton GM, Holbrook JJ (1988) Cancer-associated lactate dehydrogenase is a tyrosylphosphorylated form of human LDH-A, skeletal muscle isoenzyme. Cancer Invest 6(1):93–101

    PubMed  CAS  Google Scholar 

  • Li J, Wetzel MG, O’Brien PJ (1992) Transport of n-3 fatty acids from the intestine to the retina in rats. J Lipid Res 33(4):539–548

    PubMed  CAS  Google Scholar 

  • Lin CS, Sharpley MS, Fan W, Waymire KG, Sadun AA, Carelli V, Ross-Cisneros FN, Baciu P, Sung E, McManus MJ, Pan BX, Gil DW, Macgregor GR, Wallace DC (2012) Mouse mtDNA mutant model of Leber hereditary optic neuropathy. Proc Natl Acad Sci USA 109(49):20065–20070. doi:10.1073/pnas.1217113109

    PubMed Central  PubMed  CAS  Google Scholar 

  • Linsenmeier RA (1986) Effects of light and darkness on oxygen distribution and consumption in the cat retina. J Gen Physiol 88(4):521–542

    PubMed  CAS  Google Scholar 

  • Linton JD, Holzhausen LC, Babai N, Song H, Miyagishima KJ, Stearns GW, Lindsay K, Wei J, Chertov AO, Peters TA, Caffe R, Pluk H, Seeliger MW, Tanimoto N, Fong K, Bolton L, Kuok DL, Sweet IR, Bartoletti TM, Radu RA, Travis GH, Zagotta WN, Townes-Anderson E, Parker E, Van der Zee CE, Sampath AP, Sokolov M, Thoreson WB, Hurley JB (2010) Flow of energy in the outer retina in darkness and in light. Proc Natl Acad Sci USA 107(19):8599–8604. doi:10.1073/pnas.10024711071002471107 [pii]

  • Lopez-Escalera R, Li XB, Szerencsei RT, Schnetkamp PP (1991) Glycolysis and glucose uptake in intact outer segments isolated from bovine retinal rods. Biochemistry 30(37):8970–8976

    PubMed  CAS  Google Scholar 

  • Lowry OH, Roberts NR, Lewis C (1956) The quantitative histochemistry of the retina. J Biol Chem 220(2):879–892

    PubMed  CAS  Google Scholar 

  • Lowry OH, Roberts NR, Schulz DW, Clow JE, Clark JR (1961) Quantitative histochemistry of retina. II. Enzymes of glucose metabolism. J Biol Chem 236:2813–2820

    PubMed  CAS  Google Scholar 

  • Macaluso C, Onoe S, Niemeyer G (1992) Changes in glucose level affect rod function more than cone function in the isolated, perfused cat eye. Invest Opthalmol Vis Sci 33:2798–2808

    CAS  Google Scholar 

  • Mamczur P, Mazurek J, Rakus D (2010) Ubiquitous presence of gluconeogenic regulatory enzyme, fructose-1,6-bisphosphatase, within layers of rat retina. Cell Tissue Res 341(2):213–221. doi:10.1007/s00441-010-1008-2

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mantych GJ, Hageman GS, Devaskar SU (1993) Characterization of glucose transporter isoforms in the adult and developing human eye. Endocrinology 133(2):600–607

    PubMed  CAS  Google Scholar 

  • Marc RE (1992) Structural organization of GABAergic circuitry in ectotherm retinas. Prog Brain Res 90:61–92

    PubMed  CAS  Google Scholar 

  • Marc RE, Murry RF, Fisher SK, Linberg KA, Lewis GP, Kalloniatis M (1998) Amino acid signatures in the normal cat retina. Invest Ophthalmol Vis Sci 39(9):1685–1693

    PubMed  CAS  Google Scholar 

  • Marc RE, Jones BW, Watt CB, Vazquez-Chona F, Vaughan DK, Organisciak DT (2008) Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration. Mol Vis 14:782–806

    PubMed Central  PubMed  Google Scholar 

  • Martin PM, Dun Y, Mysona B, Ananth S, Roon P, Smith SB, Ganapathy V (2007) Expression of the sodium-coupled monocarboxylate transporters SMCT1 (SLC5A8) and SMCT2 (SLC5A12) in retina. Invest Ophthalmol Vis Sci 48(7):3356–3363. doi:10.1167/iovs.06-0888

    PubMed  Google Scholar 

  • Matschinsky FM, Passonneau JV, Lowry OH (1968) Quantitative histochemical analysis of glycolytic intermediates and cofactors with an oil well technique. J Histochem Cytochem 16(1):29–39

    PubMed  CAS  Google Scholar 

  • Matthews HR, Fain GL, Murphy RL, Lamb TD (1990) Light adaptation in cone photoreceptors of the salamander: a role for cytoplasmic calcium. J Physiol (Lond) 420:447–469

    CAS  Google Scholar 

  • Maurer CM, Schonthaler HB, Mueller KP, Neuhauss SC (2010) Distinct retinal deficits in a zebrafish pyruvate dehydrogenase-deficient mutant. J Neurosci 30(36):11962–11972. doi:10.1523/JNEUROSCI.2848-10.2010

    PubMed  CAS  Google Scholar 

  • Mayhew TM, Astle D (1997) Photoreceptor number and outer segment disk membrane surface area in the retina of the rat: stereological data for whole organ and average photoreceptor cell. J Neurocytol 26(1):53–61

    PubMed  CAS  Google Scholar 

  • McCormack JG, Longo EA, Corkey BE (1990) Glucose-induced activation of pyruvate dehydrogenase in isolated rat pancreatic islets. Biochem J 267(2):527–530

    PubMed Central  PubMed  CAS  Google Scholar 

  • McGinnis JF, Leveille PJ (1984) Glycerol phosphate dehydrogenase in developing retina of normal and mutant mice. Curr Eye Res 3(2):363–367

    PubMed  CAS  Google Scholar 

  • Medrano CJ, Fox DA (1995) Oxygen consumption in the rat outer and inner retina: light- and pharmacologically-induced inhibition. Exp Eye Res 61(3):273–284

    PubMed  CAS  Google Scholar 

  • Miyagishima KJ, Cornwall MC, Sampath AP (2009) Metabolic constraints on the recovery of sensitivity after visual pigment bleaching in retinal rods. J Gen Physiol 134(3):165–175. doi:10.1085/jgp.200910267jgp.200910267 [pii]

    Google Scholar 

  • Mizuno A (1976) Incorporation of serine and ethanolamine into the phospholipids in rabbit retina. J Biochem (Tokyo) 80(1):45–52

    CAS  Google Scholar 

  • Molday RS, Zhang K (2010) Defective lipid transport and biosynthesis in recessive and dominant Stargardt macular degeneration. Prog Lipid Res 49(4):476–492. doi:10.1016/j.plipres.2010.07.002

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nandrot EF, Dufour EM (2010) Mertk in daily retinal phagocytosis: a history in the making. Adv Exp Med Biol 664:133–140. doi:10.1007/978-1-4419-1399-9_16

    PubMed  CAS  Google Scholar 

  • Nelson CM, Ackerman KM, O’Hayer P, Bailey TJ, Gorsuch RA, Hyde DR (2013) Tumor necrosis factor-alpha is produced by dying retinal neurons and is required for Müller glia proliferation during zebrafish retinal regeneration. J Neurosci 33(15):6524–6539. doi:10.1523/JNEUROSCI.3838-12.2013

    PubMed Central  PubMed  CAS  Google Scholar 

  • Newell FW, Kurimoto S (1963) Histochemistry of the retina in the alloxan-diabetic Rat. Br J Ophthalmol 47:596–600

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nicholls DG (2005) Mitochondria and calcium signaling. Cell Calcium 38(3-4):311–317. doi:10.1016/j.ceca.2005.06.011

    PubMed  CAS  Google Scholar 

  • Nielsen JC, Maude MB, Hughes H, Anderson RE (1986) Rabbit photoreceptor outer segments contain high levels of docosapentaenoic acid. Invest Ophthalmol Vis Sci 27(2):261–264

    PubMed  CAS  Google Scholar 

  • Nihira M, Anderson K, Gorin FA, Burns MS (1995) Primate rod and cone photoreceptors may differ in glucose accessibility. Invest Ophthalmol Vis Sci 36(7):1259–1270

    PubMed  CAS  Google Scholar 

  • Nikonov SS, Kholodenko R, Lem J, Pugh EN Jr (2006) Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings. J Gen Physiol 127:547–557

    Google Scholar 

  • Nikonov SS, Brown BM, Davis JA, Zuniga FI, Bragin A, Pugh EN Jr, Craft SM (2008) Mouse cones require an arrestin for normal inactivation of phototransduction. Neuron 59:462–474

    PubMed Central  PubMed  CAS  Google Scholar 

  • Noell WK (1951) The effect of iodoacetate on the vertebrate retina. J Cell Physiol 37(2):283–307

    PubMed  CAS  Google Scholar 

  • Okawa H, Sampath AP, Laughlin SB, Fain GL (2008) ATP consumption by mammalian rod photoreceptors in darkness and in light. Curr Biol 18(24):1917–1921. doi:S0960-9822(08)01398-5 [pii]10.1016/j.cub.2008.10.029

    Google Scholar 

  • Olson AL, Pessin JE (1996) Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annu Rev Nutr 16:235–256. doi:10.1146/annurev.nu.16.070196.001315

    PubMed  CAS  Google Scholar 

  • Omarova S, Charvet CD, Reem RE, Mast N, Zheng W, Huang S, Peachey NS, Pikuleva IA (2012) Abnormal vascularization in mouse retina with dysregulated retinal cholesterol homeostasis. J Clin Invest 122(8):3012–3023. doi:10.1172/JCI63816

    PubMed Central  PubMed  CAS  Google Scholar 

  • Organisciak DT, Vaughan DK (2010) Retinal light damage: mechanisms and protection. Prog Retinal Eye Res 29(2):113–134. doi:10.1016/j.preteyeres.2009.11.004

    Google Scholar 

  • Palmieri L, Pardo B, Lasorsa FM, del Arco A, Kobayashi K, Iijima M, Runswick MJ, Walker JE, Saheki T, Satrustegui J, Palmieri F (2001) Citrin and aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria. EMBO J 20(18):5060–5069. doi:10.1093/emboj/20.18.5060

    PubMed Central  PubMed  CAS  Google Scholar 

  • Panfoli I, Musante L, Bachi A, Ravera S, Calzia D, Cattaneo A, Bruschi M, Bianchini P, Diaspro A, Morelli A, Pepe IM, Tacchetti C, Candiano G (2008) Proteomic analysis of the retinal rod outer segment disks. J Proteome Res 7(7):2654–2669. doi:10.1021/pr7006939

    PubMed  CAS  Google Scholar 

  • Panfoli I, Calzia D, Bianchini P, Ravera S, Diaspro A, Candiano G, Bachi A, Monticone M, Aluigi MG, Barabino S, Calabria G, Rolando M, Tacchetti C, Morelli A, Pepe IM (2009) Evidence for aerobic metabolism in retinal rod outer segment disks. Int J Biochem Cell Biol 41(12):2555–2565. doi:10.1016/j.biocel.2009.08.013

    PubMed  CAS  Google Scholar 

  • Panfoli I, Calzia D, Ravera S, Bruschi M, Tacchetti C, Candiani S, Morelli A, Candiano G (2011) Extramitochondrial tricarboxylic acid cycle in retinal rod outer segments. Biochimie 93(9):1565–1575. doi:10.1016/j.biochi.2011.05.020

    PubMed  CAS  Google Scholar 

  • Panfoli I, Calzia D, Ravera S, Morelli AM, Traverso CE (2012) Extra-mitochondrial aerobic metabolism in retinal rod outer segments: new perspectives in retinopathies. Med Hypotheses 78(4):423–427. doi:10.1016/j.mehy.2011.12.012

    PubMed  CAS  Google Scholar 

  • Panfoli I, Calzia D, Bruschi M, Oneto M, Bianchini P, Ravera S, Petretto A, Diaspro A, Candiano G (2013) Functional expression of oxidative phosphorylation proteins in the rod outer segment disc. Cell Biochem Funct 31(6):532–538. doi:10.1002/cbf.2943

    PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91(22):10625–10629

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32(7):1152–1166. doi:10.1038/jcbfm.2011.149

    PubMed Central  PubMed  CAS  Google Scholar 

  • Perezleon JA, Osorio-Paz I, Francois L, Salceda R (2013) Immunohistochemical localization of glycogen synthase and GSK3beta: control of glycogen content in retina. Neurochem Res 38(5):1063–1069. doi:10.1007/s11064-013-1017-0

    PubMed  CAS  Google Scholar 

  • Phadke M, Lokeshwar MR, Bhutada S, Tampi C, Saxena R, Kohli S, Shah KN (2012) Kearns Sayre syndrome: case report with review of literature. Ind J Pediatr 79(5):650–654. doi:10.1007/s12098-011-0618-3

    Google Scholar 

  • Phillips MJ, Webb-Wood S, Faulkner AE, Jabbar SB, Biousse V, Newman NJ, Do VT, Boatright JH, Wallace DC, Pardue MT (2010) Retinal function and structure in Ant1-deficient mice. Invest Ophthalmol Vis Sci 51(12):6744–6752. doi:10.1167/iovs.10-5421

    PubMed Central  PubMed  Google Scholar 

  • Philp NJ, Yoon H, Grollman EF (1998) Monocarboxylate transporter MCT1 is located in the apical membrane and MCT3 in the basal membrane of rat RPE. Am J Physiol 274(6 pt 2):R1824–R1828

    PubMed  CAS  Google Scholar 

  • Philp NJ, Ochrietor JD, Rudoy C, Muramatsu T, Linser PJ (2003a) Loss of MCT1, MCT3, and MCT4 expression in the retinal pigment epithelium and neural retina of the 5A11/basigin-null mouse. Invest Ophthalmol Vis Sci 44(3):1305–1311

    PubMed  Google Scholar 

  • Philp NJ, Wang D, Yoon H, Hjelmeland LM (2003b) Polarized expression of monocarboxylate transporters in human retinal pigment epithelium and ARPE-19 cells. Invest Ophthalmol Vis Sci 44(4):1716–1721

    PubMed  Google Scholar 

  • Poitry S, Poitry-Yamate C, Ueberfeld J, MacLeish PR, Tsacopoulos M (2000) Mechanisms of glutamate metabolic signaling in retinal glial (Müller) cells. J Neurosci 20(5):1809–1821

    PubMed  CAS  Google Scholar 

  • Poitry-Yamate CL, Tsacopoulos M (1992) Glucose metabolism in freshly isolated Müller glial cells from a mammalian retina. J Comp Neurol 320(2):257–266. doi:10.1002/cne.903200209

    PubMed  CAS  Google Scholar 

  • Poitry-Yamate CL, Poitry S, Tsacopoulos M (1995) Lactate released by Müller glial cells is metabolized by photoreceptors from mammalian retina. J Neurosci 15(7 pt 2):5179–5191

    PubMed  CAS  Google Scholar 

  • Pow DV, Robinson SR (1994) Glutamate in some retinal neurons is derived solely from glia. Neuroscience 60(2):355–366

    PubMed  CAS  Google Scholar 

  • Prasad C, Rupar T, Prasad AN (2011) Pyruvate dehydrogenase deficiency and epilepsy. Brain Dev 33(10):856–865. doi:10.1016/j.braindev.2011.08.003

    PubMed  Google Scholar 

  • Punzo C, Kornacker K, Cepko CL (2009) Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12(1):44–52. doi:nn.2234 [pii]10.1038/nn.2234

    Google Scholar 

  • Punzo C, Xiong W, Cepko CL (2012) Loss of daylight vision in retinal degeneration: are oxidative stress and metabolic dysregulation to blame? J Biol Chem 287(3):1642–1648. doi:10.1074/jbc.R111.304428

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rajala RV (2010) Phosphoinositide 3-kinase signaling in the vertebrate retina. J Lipid Res 51(1):4–22. doi:10.1194/jlr.R000232

    PubMed Central  PubMed  Google Scholar 

  • Rajala RV, Anderson RE (2003) Light regulation of the insulin receptor in the retina. Mol Neurobiol 28:123–138

    PubMed  CAS  Google Scholar 

  • Rajala RV, Anderson RE (2010) Rhodopsin-regulated insulin receptor signaling pathway in rod photoreceptor neurons. Mol Neurobiol 42(1):39–47. doi:10.1007/s12035-010-8130-8

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rajala A, Daly RJ, Tanito M, Allen DT, Holt LJ, Lobanova ES, Arshavsky VY, Rajala RV (2009) Growth factor receptor-bound protein 14 undergoes light-dependent intracellular translocation in rod photoreceptors: functional role in retinal insulin receptor activation. Biochemistry 48(24):5563–5572. doi:10.1021/bi9000062

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rapp LM, Ghalayini AJ (1999) Influence of UVA light stress on photoreceptor cell metabolism: decreased rates of rhodopsin regeneration and opsin synthesis. Exp Eye Res 68(6):757–764. doi:10.1006/exer.1999.0662

    PubMed  CAS  Google Scholar 

  • Reichenbach A, Bringmann A (2013) New functions of Muller cells. Glia 61(5):651–678. doi:10.1002/glia.22477

    PubMed  Google Scholar 

  • Reichenbach A, Stolzenburg JU, Wolburg H, Hartig W, el-Hifnawi E, Martin H (1995) Effects of enhanced extracellular ammonia concentration on cultured mammalian retinal glial (Müller) cells. Glia 13(3):195–208. doi:10.1002/glia.440130306

    PubMed  CAS  Google Scholar 

  • Reidel B, Thompson JW, Farsiu S, Moseley MA, Skiba NP, Arshavsky VY (2011) Proteomic profiling of a layered tissue reveals unique glycolytic specializations of photoreceptor cells. Mol Cell Proteomics 10(3):M110 002469. doi:10.1074/mcp.M110.002469M110.002469 [pii]

  • Riepe RE, Norenburg MD (1977) Müller cell localisation of glutamine synthetase in rat retina. Nature (Lond) 268(5621):654–655

    CAS  Google Scholar 

  • Rosenzweig SA, Zetterstrom C, Benjamin A (1990) Identification of retinal insulin receptors using site-specific antibodies to a carboxyl-terminal peptide of the human insulin receptor alpha-subunit. Upregulation of neuronal insulin receptors in diabetes. J Biol Chem 265(29):18030–18034

    PubMed  CAS  Google Scholar 

  • Ross CD, Godfrey DA (1985) Distributions of aspartate aminotransferase and malate dehydrogenase activities in rat retinal layers. J Histochem Cytochem 33(7):624–630

    PubMed  CAS  Google Scholar 

  • Ross CD, Bowers M, Godfrey DA (1987) Distributions of the activities of aspartate aminotransferase isoenzymes in rat retinal layers. Neurosci Lett 74(2):205–210

    PubMed  CAS  Google Scholar 

  • Roth S, Rosenbaum PS, Osinski J, Park SS, Toledano AY, Li B, Moshfeghi AA (1997) Ischemia induces significant changes in purine nucleoside concentration in the retina-choroid in rats. Exp Eye Res 65(6):771–779. doi:10.1006/exer.1997.0391

    PubMed  CAS  Google Scholar 

  • Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13(3):713–725

    PubMed  CAS  Google Scholar 

  • Rowan MJ, Ripps H, Shen W (2010) Fast glutamate uptake via EAAT2 shapes the cone-mediated light offset response in bipolar cells. J Physiol (Lond) 588(pt 20):3943–3956. doi:10.1113/jphysiol.2010.191437

    CAS  Google Scholar 

  • Ruggiero L, Connor MP, Chen J, Langen R, Finnemann SC (2012) Diurnal, localized exposure of phosphatidylserine by rod outer segment tips in wild-type but not Itgb5−/− or Mfge8−/− mouse retina. Proc Natl Acad Sci USA 109(21):8145–8148. doi:10.1073/pnas.1121101109

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rutter GA, Pralong WF, Wollheim CB (1992) Regulation of mitochondrial glycerol-phosphate dehydrogenase by Ca2+ within electropermeabilized insulin-secreting cells (INS-1). Biochim Biophys Acta 1175(1):107–113. doi:0167-4889(92)90016-5 [pii]

    Google Scholar 

  • Saavedra RA, Anderson GR (1983) A cancer-associated lactate dehydrogenase is expressed in normal retina. Science 221(4607):291–292

    PubMed  CAS  Google Scholar 

  • Salvini-Plawen LV, Mayr E (1977) On the evolution of photoreceptors and eyes. Evol Biol 10:207–263

    Google Scholar 

  • Sampath AP, Matthews HR, Cornwall MC, Bandarchi J, Fain GL (1999) Light-dependent changes in outer segment free-Ca2+ concentration in salamander cone photoreceptors. J Gen Physiol 113(2):267–277

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sanchez-Chavez G, Pena-Rangel MT, Riesgo-Escovar JR, Martinez-Martinez A, Salceda R (2012) Insulin stimulated-glucose transporter Glut 4 is expressed in the retina. PloS One 7(12):e52959. doi:10.1371/journal.pone.0052959

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sanchez-Martin MJ, Ramon E, Torrent-Burgues J, Garriga P (2013) Improved conformational stability of the visual G protein-coupled receptor rhodopsin by specific interaction with docosahexaenoic acid phospholipid. ChemBioChem 14(5):639–644. doi:10.1002/cbic.201200687

    PubMed  CAS  Google Scholar 

  • SanGiovanni JP, Chew EY (2005) The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retinal Eye Res 24(1):87–138. doi:10.1016/j.preteyeres.2004.06.002

    CAS  Google Scholar 

  • Sarthy VP, Dudley VJ, Tanaka K (2004) Retinal glucose metabolism in mice lacking the l-glutamate/aspartate transporter. Vis Neurosci 21(4):637–643. doi:10.1017/S0952523804214122

    PubMed  Google Scholar 

  • Sarthy VP, Pignataro L, Pannicke T, Weick M, Reichenbach A, Harada T, Tanaka K, Marc R (2005) Glutamate transport by retinal Müller cells in glutamate/aspartate transporter-knockout mice. Glia 49(2):184–196. doi:10.1002/glia.20097

    PubMed  Google Scholar 

  • Schmidt SY, Blanks JC, Sandberg MA (1985) Enhancement of (polyA+)RNA synthesis in light in isolated intact photoreceptor cells of the rat. Exp Eye Res 41(2):159–170

    PubMed  CAS  Google Scholar 

  • Simpson PB, Russell JT (1998) Role of mitochondrial Ca2+ regulation in neuronal and glial cell signalling. Brain Res Brain Res Rev 26(1):72–81. doi:S0165017397000568 [pii]

    Google Scholar 

  • Simurda M, Wilson JE (1980) Localization of hexokinase in neural tissue: immunofluorescence studies on the developing cerebellum and retina of the rat. J Neurochem 35(1):58–66

    PubMed  CAS  Google Scholar 

  • Skiba NP, Spencer WJ, Salinas RY, Lieu EC, Thompson JW, Arshavsky VY (2013) Proteomic identification of unique photoreceptor disc components reveals the presence of PRCD, a protein linked to retinal degeneration. J Proteome Res 12(6):3010–3018. doi:10.1021/pr4003678

    PubMed  CAS  Google Scholar 

  • Smaili SS, Hsu YT, Youle RJ, Russell JT (2000) Mitochondria in Ca2+ signaling and apoptosis. J Bioenerg Biomembr 32(1):35–46

    PubMed  CAS  Google Scholar 

  • Steinberg RH (1987) Monitoring communications between photoreceptors and pigment epithelial cells: effects of “mild” systemic hypoxia. Friedenwald lecture. Invest Ophthalmol Vis Sci 28(12):1888–1904

    PubMed  CAS  Google Scholar 

  • Stinson AM, Wiegand RD, Anderson RE (1991) Recycling of docosahexaenoic acid in rat retinas during n-3 fatty acid deficiency. J Lipid Res 32(12):2009–2017

    PubMed  CAS  Google Scholar 

  • Stobart JL, Anderson CM (2013) Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front Cell Neurosci 7:38. doi:10.3389/fncel.2013.00038

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stone WL, Farnsworth CC, Dratz EA (1979) A reinvestigation of the fatty acid content of bovine, rat and frog retinal rod outer segments. Exp Eye Res 28(4):387–397

    PubMed  CAS  Google Scholar 

  • Stone J, van Driel D, Valter K, Rees S, Provis J (2008) The locations of mitochondria in mammalian photoreceptors: relation to retinal vasculature. Brain Res 1189:58–69. doi:S0006-8993(07)02586-3 [pii]10.1016/j.brainres.2007.10.083

    Google Scholar 

  • Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85(3):845–881. doi:10.1152/physrev.00021.2004

    PubMed  CAS  Google Scholar 

  • Sykes SM, Robison WG Jr, Waxler M, Kuwabara T (1981) Damage to the monkey retina by broad-spectrum fluorescent light. Invest Ophthalmol Vis Sci 20(4):425–434

    PubMed  CAS  Google Scholar 

  • Takata K, Kasahara T, Kasahara M, Ezaki O, Hirano H (1992) Ultracytochemical localization of the erythrocyte/HepG2-type glucose transporter (GLUT1) in cells of the blood-retinal barrier in the rat. Invest Ophthalmol Vis Sci 33(2):377–383

    PubMed  CAS  Google Scholar 

  • Takata K, Hirano H, Kasahara M (1997) Transport of glucose across the blood-tissue barriers. Int Rev Cytol 172:1–53

    PubMed  CAS  Google Scholar 

  • Tantama M, Hung YP, Yellen G (2012) Optogenetic reporters: fluorescent protein-based genetically encoded indicators of signaling and metabolism in the brain. Prog Brain Res 196:235–263. doi:10.1016/B978-0-444-59426-6.00012-4

    PubMed Central  PubMed  CAS  Google Scholar 

  • Taylor S, Srinivasan B, Wordinger RJ, Roque RS (2003) Glutamate stimulates neurotrophin expression in cultured Muller cells. Brain Res Mol Brain Res 111(1-2):189–197

    PubMed  CAS  Google Scholar 

  • Taylor MR, Hurley JB, Van Epps HA, Brockerhoff SE (2004) A zebrafish model for pyruvate dehydrogenase deficiency: rescue of neurological dysfunction and embryonic lethality using a ketogenic diet. Proc Natl Acad Sci USA 101(13):4584–4589. doi:10.1073/pnas.03070741010307074101 [pii]

    Google Scholar 

  • Thorens B, Mueckler M (2010) Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab 298(2):E141–E145. doi:10.1152/ajpendo.00712.2009

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tomi M, Hosoya K (2004) Application of magnetically isolated rat retinal vascular endothelial cells for the determination of transporter gene expression levels at the inner blood-retinal barrier. J Neurochem 91(5):1244–1248. doi:10.1111/j.1471-4159.2004.02842.x

    PubMed  CAS  Google Scholar 

  • Tsacopoulos M, Evequoz-Mercier V, Perrottet P, Buchner E (1988) Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate. Proc Natl Acad Sci USA 85(22):8727–8731

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ueki Y, Karl MO, Sudar S, Pollak J, Taylor RJ, Loeffler K, Wilken MS, Reardon S, Reh TA (2012) P53 is required for the developmental restriction in Müller glial proliferation in mouse retina. Glia 60(10):1579–1589. doi:10.1002/glia.22377

    PubMed Central  PubMed  Google Scholar 

  • Veuthey AL, Tsacopoulos M, Millan de Ruiz L, Perrottet P (1994) Cellular and subcellular localization of hexokinase, glutamate dehydrogenase, and alanine aminotransferase in the honeybee drone retina. J Neurochem 62(5):1939–1946

    PubMed  CAS  Google Scholar 

  • Vollrath D, Feng W, Duncan JL, Yasumura D, D’Cruz PM, Chappelow A, Matthes MT, Kay MA, LaVail MM (2001) Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc Natl Acad Sci USA 98(22):12584–12589. doi:10.1073/pnas.221364198

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wada Y, Sugiyama J, Okano T, Fukada Y (2006) GRK1 and GRK7: unique cellular distribution and widely different activities of opsin phosphorylation in the zebrafish rods and cones. J Neurochem 98:824–837

    PubMed  CAS  Google Scholar 

  • Waldbillig RJ, Fletcher RT, Chader GJ, Rajagopalan S, Rodrigues M, LeRoith D (1987a) Retinal insulin receptors. 1. Structural heterogeneity and functional characterization. Exp Eye Res 45(6):823–835

    PubMed  CAS  Google Scholar 

  • Waldbillig RJ, Fletcher RT, Chader GJ, Rajagopalan S, Rodrigues M, LeRoith D (1987b) Retinal insulin receptors. 2. Characterization and insulin-induced tyrosine kinase activity in bovine retinal rod outer segments. Exp Eye Res 45(6):837–844

    PubMed  CAS  Google Scholar 

  • Wang L, Kondo M, Bill A (1997) Glucose metabolism in cat outer retina. Effects of light and hyperoxia. Invest Ophthalmol Vis Sci 38(1):48–55

    PubMed  CAS  Google Scholar 

  • Wangsa-Wirawan ND, Linsenmeier RA (2003) Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 121(4):547–557. doi:10.1001/archopht.121.4.547

    PubMed  Google Scholar 

  • Warbug O (1927) Über die Klassifizierung tierischer Gewebe nach ihrem Stoffwechsel. Biochem Z 184:484–488

    Google Scholar 

  • Wasilewa P, Hockwin O, Korte I (1976) Glycogen concentration changes in retina, vitreous body and other eye tissues caused by disturbances of blood circulation. Albrecht Von Graefes Arch Klin Exp Ophthalmol 199(2):115–120

    PubMed  CAS  Google Scholar 

  • Watanabe T, Mio Y, Hoshino FB, Nagamatsu S, Hirosawa K, Nakahara K (1994) GLUT2 expression in the rat retina: localization at the apical ends of Müller cells. Brain Res 655(1-2):128–134

    PubMed  CAS  Google Scholar 

  • Watanabe T, Matsushima S, Okazaki M, Nagamatsu S, Hirosawa K, Uchimura H, Nakahara K (1996) Localization and ontogeny of GLUT3 expression in the rat retina. Brain Res Dev Brain Res 94(1):60–66

    PubMed  CAS  Google Scholar 

  • Watanabe T, Nagamatsu S, Matsushima S, Kirino T, Uchimura H (1999a) Colocalization of GLUT3 and choline acetyltransferase immunoreactivity in the rat retina. Biochem Biophys Res Commun 256(3):505–511. doi:10.1006/bbrc.1999.0369

    PubMed  CAS  Google Scholar 

  • Watanabe T, Nagamatsu S, Matsushima S, Kondo K, Motobu H, Hirosawa K, Mabuchi K, Kirino T, Uchimura H (1999b) Developmental expression of GLUT2 in the rat retina. Cell Tissue Res 298(2):217–223

    PubMed  CAS  Google Scholar 

  • Wen R, Tao W, Luo L, Huang D, Kauper K, Stabila P, LaVail MM, Laties AM, Li Y (2012) Regeneration of cone outer segments induced by CNTF. Adv Exp Med Biol 723:93–99. doi:10.1007/978-1-4614-0631-0_13

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wetzel RK, Arystarkhova E, Sweadner KJ (1999) Cellular and subcellular specification of Na, K-ATPase alpha and beta isoforms in the postnatal development of mouse retina. J Neurosci 19(22):9878–9889

    PubMed  CAS  Google Scholar 

  • Wilkus RJ, Chatrian GE, Lettich E (1971) The electroretinogram during terminal anoxia in humans. Electroencephalogr Clin Neurophysiol 31(6):537–546

    PubMed  CAS  Google Scholar 

  • Williams DS, Fisher SK (1987) Prevention of rod disk shedding by detachment from the retinal pigment epithelium. Invest Ophthalmol Vis Sci 28(1):184–187

    PubMed  CAS  Google Scholar 

  • Willoughby JJ, Jensen AM (2012) Generation of a genetically encoded marker of rod photoreceptor outer segment growth and renewal. Biology Open 1(1):30–36. doi:10.1242/bio.2011016

    PubMed Central  PubMed  Google Scholar 

  • Winkler BS (1981) Glycolytic and oxidative metabolism in relation to retinal function. J Gen Physiol 77(6):667–692

    PubMed  CAS  Google Scholar 

  • Winkler BS (1986) Buffer dependence of retinal glycolysis and ERG potentials. Exp Eye Res 42(6):585–593

    PubMed  CAS  Google Scholar 

  • Winkler BS (2008) An hypothesis to account for the renewal of outer segments in rod and cone photoreceptor cells: renewal as a surrogate antioxidant. Invest Ophthalmol Vis Sci 49(8):3259–3261. doi:10.1167/iovs.08-1785

    PubMed  Google Scholar 

  • Winkler BS, Simson V, Benner J (1977) Importance of bicarbonate in retinal function. Invest Ophthalmol Vis Sci 16(8):766–768

    PubMed  CAS  Google Scholar 

  • Winkler BS, Kapousta-Bruneau N, Arnold MJ, Green DG (1999) Effects of inhibiting glutamine synthetase and blocking glutamate uptake on b-wave generation in the isolated rat retina. Vis Neurosci 16(2):345–353. doi:S095252389916214X [pii]

    Google Scholar 

  • Winkler BS, Arnold MJ, Brassell MA, Puro DG (2000) Energy metabolism in human retinal Müller cells. Invest Ophthalmol Vis Sci 41(10):3183–3190

    PubMed Central  PubMed  CAS  Google Scholar 

  • Winkler BS, Pourcho RG, Starnes C, Slocum J, Slocum N (2003) Metabolic mapping in mammalian retina: a biochemical and 3H-2-deoxyglucose autoradiographic study. Exp Eye Res 77(3):327–337. doi:S0014483503001477 [pii]

    Google Scholar 

  • Winkler BS, Starnes CA, Sauer MW, Firouzgan Z, Chen SC (2004) Cultured retinal neuronal cells and Muller cells both show net production of lactate. Neurochem Int 45(2-3):311–320. doi:10.1016/j.neuint.2003.08.017S0197018603002948 [pii]

    Google Scholar 

  • Xu Y, Ola MS, Berkich DA, Gardner TW, Barber AJ, Palmieri F, Hutson SM, LaNoue KF (2007) Energy sources for glutamate neurotransmission in the retina: absence of the aspartate/glutamate carrier produces reliance on glycolysis in glia. J Neurochem 101(1):120–131. doi:JNC4349 [pii]10.1111/j.1471-4159.2006.04349.x

    Google Scholar 

  • Yeh TS, Ho JD, Yang VW, Tzeng CR, Hsieh RH (2005) Calcium stimulates mitochondrial biogenesis in human granulosa cells. Ann NY Acad Sci 1042:157–162. doi:1042/1/157 [pii]10.1196/annals.1338.017

    Google Scholar 

  • Young RW (1971) The renewal of rod and cone outer segments in the rhesus monkey. J Cell Biol 49(2):303–318

    PubMed Central  PubMed  CAS  Google Scholar 

  • Young RW (1976) Visual cells and the concept of renewal. Invest Ophthalmol Vis Sci 15(9):700–725

    PubMed  CAS  Google Scholar 

  • Young RW, Bok D (1969) Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol 42(2):392–403

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yu DY, Cringle SJ (2001) Oxygen distribution and consumption within the retina in vascularized and avascular retinas and in animal models of retinal disease. Prog Retina Eye Res 20:175–208

    CAS  Google Scholar 

  • Yu DY, Cringle SJ (2005) Retinal degeneration and local oxygen metabolism. Exp Eye Res 80(6):745–751. doi:10.1016/j.exer.2005.01.018

    PubMed  CAS  Google Scholar 

  • Yuan C, Chen H, Anderson RE, Kuwata O, Ebrey TG (1998) The unique lipid composition of gecko (Gekko Gekko) photoreceptor outer segment membranes. Comp Biochem Physiol B Biochem Mol Biol 120(4):785–789

    PubMed  CAS  Google Scholar 

  • Zayas-Santiago A, Kang Derwent JJ (2009) Preservation of intact adult rat photoreceptors in vitro: study of dissociation techniques and the effect of light. Mol Vis 15:1–9. doi:1 [pii]

    Google Scholar 

  • Zhao Y, Jin J, Hu Q, Zhou HM, Yi J, Yu Z, Xu L, Wang X, Yang Y, Loscalzo J (2011) Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab 14(4):555–566. doi:10.1016/j.cmet.2011.09.004

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zheng W, Reem RE, Omarova S, Huang S, DiPatre PL, Charvet CD, Curcio CA, Pikuleva IA (2012) Spatial distribution of the pathways of cholesterol homeostasis in human retina. PloS One 7(5):e37926. doi:10.1371/journal.pone.0037926

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Hurley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Hurley, J.B. et al. (2014). Energy Metabolism in the Vertebrate Retina. In: Furukawa, T., Hurley, J., Kawamura, S. (eds) Vertebrate Photoreceptors. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54880-5_5

Download citation

Publish with us

Policies and ethics