Abstract
Living organisms have generated and optimized their photoreceptor cells to acquire information from the outer environment. Among the photoreceptor cells, rod and cone photoreceptor cells (rods and cones) present in vertebrate retinas have evolved to mediate vision. Rods are responsible for dim light vision whereas cones act for bright light and color vision. Corresponding to their difference in physiological role, both cells contain functional proteins constituting signal transduction cascades with different properties. Visual pigment is the upstream protein that absorbs light and triggers the subsequent signal transduction cascade. It has diversified into five groups: the L (LWS/MWS), S (SWS1), M1 (SWS2), M2 (RH2), and rhodopsin (RH1) groups. The visual pigments contained in the first four groups are collectively called cone pigments, and they have similar molecular properties, although they have a wide range of absorption maxima (from 359 to 584 nm) that work for color discrimination. Cone pigments exhibit molecular properties distinct from rod pigment rhodopsins, such as their thermal stability and kinetics of retinal incorporation and release, which contribute to the difference in cellular response between cones and rods. Because rod and cone pigments have a common ancestor, they must have acquired diversified molecular properties during the course of molecular evolution. In this chapter, the molecular basis of the evolution and diversification of vertebrate visual pigments as related to their physiological functions is described.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Azuma M, Seki T, Fujishita S (1988) Formation of visual pigment chromophores during the development of Xenopus laevis. Vision Res 28:959–964. doi:10.1016/0042-6989(88)90072-7
Bartl FJ, Vogel R (2007) Structural and functional properties of metarhodopsin III: recent spectroscopic studies on deactivation pathways of rhodopsin. Phys Chem Chem Phys 9:1648–1658. doi:10.1039/b616365c
Bennett N, Sitaramayya A (1988) Inactivation of photoexcited rhodopsin in retinal rods: the roles of rhodopsin kinase and 48-kDa protein (arrestin). Biochemistry 27:1710–1715. doi:10.1021/bi00405a049
Blackshaw S, Snyder SH (1997) Parapinopsin, a novel catfish opsin localized to the parapineal organ, defines a new gene family. J Neurosci 17:8083–8092
Blackshaw S, Snyder SH (1999) Encephalopsin: a novel mammalian extraretinal opsin discretely localized in the brain. J Neurosci 19:3681–3690
Carvalho LS, Cowing JA, Wilkie SE et al (2007) The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments. Mol Biol Evol 24:1843–1852. doi:10.1093/molbev/msm109
Carvalho LS, Davies WL, Robinson PR, Hunt DM (2012) Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments. Proc Biol Sci 279:387–393. doi:10.1098/rspb.2011.0782
Cooper A (1979) Energy uptake in the first step of visual excitation. Nature (Lond) 282:531–533. doi:10.1038/282531a0
Crescitelli F (1973) The visual pigment system of Xenopus laevis: tadpoles and adults. Vision Res 13:855–865. doi:10.1016/0042-6989(73)90048-5
Crescitelli F (1977) Ionochromic behavior of gecko visual pigments. Science 195:187–188
Davies WIL, Turton M, Peirson SN et al (2012a) Vertebrate ancient opsin photopigment spectra and the avian photoperiodic response. Biol Lett 8:291–294. doi:10.1098/rsbl.2011.0864
Davies WIL, Wilkie SE, Cowing JA et al (2012b) Anion sensitivity and spectral tuning of middle- and long-wavelength-sensitive (MWS/LWS) visual pigments. Cell Mol Life Sci 69:2455–2464. doi:10.1007/s00018-012-0934-4
Deeb SS (2010) Visual pigments and colour vision in marsupials and monotremes. In: Deakin JE, Waters PD, Graves JAM (eds) Marsupial genetics and genomics. Springer, The Netherlands, pp 403–414
Deguchi T (1981) Rhodopsin-like photosensitivity of isolated chicken pineal gland. Nature (Lond) 290:706–707. doi:10.1038/290706a0
Donner K (1992) Noise and the absolute thresholds of cone and rod vision. Vision Res 32:853–866. doi:10.1016/0042-6989(92)90028-H
Doukas AG, Aton B, Callender RH, Ebrey TG (1978) Resonance Raman studies of bovine metarhodopsin I and metarhodopsin II. Biochemistry 17:2430–5
Ebrey T, Koutalos Y (2001) Vertebrate photoreceptors. Prog Retin Eye Res 20:49–94. doi:10.1016/S1350-9462(00)00014-8
Fager LY, Fager RS (1979) Halide control of color of the chicken cone pigment iodopsin. Exp Eye Res 29:401–408
Fasick JI, Robinson PR (1998) Mechanism of spectral tuning in the dolphin visual pigments. Biochemistry 37:433–438. doi:10.1021/bi972500j
Fasick JI, Robinson PR (2000) Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth. Vis Neurosci 17:781–788
Fasick JI, Applebury ML, Oprian DD (2002) Spectral tuning in the mammalian short-wavelength sensitive cone pigments. Biochemistry 41:6860–6865. doi:10.1021/bi0200413
Fu Y, Kefalov V, Luo D-G et al (2008) Quantal noise from human red cone pigment. Nat Neurosci 11:565–571. doi:10.1038/nn.2110
Han M, Smith SO (1995) NMR constraints on the location of the retinal chromophore in rhodopsin and bathorhodopsin. Biochemistry 34:1425–1432. doi:10.1021/bi00004a037
Heck M, Schädel SA, Maretzki D et al (2003) Signaling states of rhodopsin. Formation of the storage form, metarhodopsin III, from active metarhodopsin II. J Biol Chem 278:3162–3169. doi:10.1074/jbc.M209675200
Hofmann CM, Carleton KL (2009) Gene duplication and differential gene expression play an important role in the diversification of visual pigments in fish. Integr Comp Biol 49:630–643. doi:10.1093/icb/icp079
Hubbard R, Wald G (1952) Cis-trans isomers of vitamin A and retinene in the rhodopsin system. J Gen Physiol 36:269–315. doi:10.1085/jgp.36.2.269
Hunt DM, Fitzgibbon J, Slobodyanyuk SJ, Bowmakers JK (1996) Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal. Vision Res 36:1217–1224. doi:10.1016/0042-6989(95)00228-6
Hunt DM, Carvalho LS, Cowing JA, Davies WL (2009) Evolution and spectral tuning of visual pigments in birds and mammals. Philos Trans R Soc Lond B Biol Sci 364:2941–2955. doi:10.1098/rstb.2009.0044
Imai H, Imamoto Y, Yoshizawa T, Shichida Y (1995) Difference in molecular properties between chicken green and rhodopsin as related to the functional difference between cone and rod photoreceptor cells. Biochemistry 34:10525–10531
Imai H, Kojima D, Oura T et al (1997a) Single amino acid residue as a functional determinant of rod and cone visual pigments. Proc Natl Acad Sci USA 94:2322–2326
Imai H, Terakita A, Tachibanaki S et al (1997b) Photochemical and biochemical properties of chicken blue-sensitive cone visual pigment. Biochemistry 36:12773–12779. doi:10.1021/bi970809x
Imai H, Kuwayama S, Onishi A et al (2005) Molecular properties of rod and cone visual pigments from purified chicken cone pigments to mouse rhodopsin in situ. Photochem Photobiol Sci 4:667–674. doi:10.1039/b416731g
Imai H, Kefalov V, Sakurai K et al (2007) Molecular properties of rhodopsin and rod function. J Biol Chem 282:6677–6684. doi:10.1074/jbc.M610086200
Imamoto Y, Imai H, Yoshizawa T, Shichida Y (1994) Thermal recovery of iodopsin from its meta I-intermediate. FEBS Lett 354:165–168
Imamoto Y, Seki I, Yamashita T, Shichida Y (2013) Efficiencies of activation of transducin by cone and rod visual pigments. Biochemistry 52:3010–3018
Jäger F, Fahmy K, Sakmar TP, Siebert F (1994) Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin. Biochemistry 33:10878–82
Kakitani H, Hatano Y, Shichida Y, Imamoto Y, Tokunaga F, Kakitani H (1992) Excited state dynamics of retinal proteins as studied by Fourier transform of optical absorption spectrum I. Development of analytical method. Photochem Photobiol 56:977–987
Kandori H, Shichida Y, Yoshizawa T (2001) Photoisomerization in rhodopsin. Biochemistry (Mosc) 66:1197–1209
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010
Kim JE, Tauber MJ, Mathies RA (2001) Wavelength dependent cis-trans isomerization in vision. Biochemistry 40:13774–13778
Knierim B, Hofmann KP, Ernst OP, Hubbell WL (2007) Sequence of late molecular events in the activation of rhodopsin. Proc Natl Acad Sci USA 104:20290–20295. doi:10.1073/pnas.0710393104
Kojima D, Okano T, Fukada Y et al (1992) Cone visual pigments are present in gecko rod cells. Proc Natl Acad Sci USA 89:6841–6845
Kojima D, Mano H, Fukada Y (2000) Vertebrate ancient-long opsin: a green-sensitive photoreceptive molecule present in zebrafish deep brain and retinal horizontal cells. J Neurosci 20:2845–2851
Kojima D, Torii M, Fukada Y, Dowling JE (2008) Differential expression of duplicated VAL-opsin genes in the developing zebrafish. J Neurochem 104:1364–1371. doi:10.1111/j.1471-4159.2007.05093.x
Koyanagi M, Kawano E, Kinugawa Y et al (2004) Bistable UV pigment in the lamprey pineal. Proc Natl Acad Sci USA 101:6687–6691. doi:10.1073/pnas.0400819101
Koyanagi M, Takada E, Nagata T et al (2013) Homologs of vertebrate Opn3 potentially serve as a light sensor in nonphotoreceptive tissue. Proc Natl Acad Sci USA. doi:10.1073/pnas.1219416110
Kuwayama S, Imai H, Hirano T et al (2002) Conserved proline residue at position 189 in cone visual pigments as a determinant of molecular properties different from rhodopsins. Biochemistry 41:15245–15252
Kuwayama S, Imai H, Morizumi T, Shichida Y (2005) Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments. Biochemistry 44:2208–2215
Lem J, Krasnoperova NV, Calvert PD et al (1999) Morphological, physiological, and biochemical changes in rhodopsin knockout mice. Proc Natl Acad Sci USA 96:736–741. doi:10.1073/pnas.96.2.736
Liebman PA, Entine G (1968) Visual pigments of frog and tadpole (Rana pipiens). Vision Res 8:761–IN7. doi:10.1016/0042-6989(68)90128-4
Longstaff C, Calhoon RD, Rando RR (1986) Deprotonation of the Schiff base of rhodopsin is obligate in the activation of the G protein. Proc Natl Acad Sci USA 83:4209–4213
Ma J, Znoiko S, Othersen KL et al (2001) A visual pigment expressed in both rod and cone photoreceptors. Neuron 32:451–461. doi:10.1016/S0896-6273(01)00482-2
Mahalingam M, Martínez-Mayorga K, Brown MF, Vogel R (2008) Two protonation switches control rhodopsin activation in membranes. Proc Natl Acad Sci USA 105:17795–17800. doi:10.1073/pnas.0804541105
Makino M, Nagai K, Suzuki T (1983) Seasonal variation of the vitamin A2-based visual pigment in the retina of adult bullfrog, Rana catesbeiana. Vision Res 23:199–204. doi:10.1016/0042-6989(83)90143-8
Mano H, Kojima D, Fukada Y (1999) Exo-rhodopsin: a novel rhodopsin expressed in the zebrafish pineal gland. Mol Brain Res 73:110–118. doi:10.1016/S0169-328X(99)00242-9
Matthews RG, Hubbard R, Brown PK, Wald G (1963) Tautomeric forms of metarhodopsin. J Gen Physiol 47:215–40
McDevitt DS, Brahma SK, Jeanny J-C, Hicks D (1993) Presence and foveal enrichment of rod opsin in the “all cone” retina of the American chameleon. Anat Rec 237:299–307. doi:10.1002/ar.1092370302
Mendes HF, van der Spuy J, Chapple JP, Cheetham ME (2005) Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11:177–185. doi:10.1016/j.molmed.2005.02.007
Mizukami T, Kandori H, Shichida Y et al (1993) Photoisomerization mechanism of the rhodopsin chromophore: picosecond photolysis of pigment containing 11-cis-locked-8-membered-ring-retinal. Proc Natl Acad Sci USA 90:4072–4076
Moutsaki P, Whitmore D, Bellingham J et al (2003) Teleost multiple tissue (tmt) opsin: a candidate photopigment regulating the peripheral clocks of zebrafish? Mol Brain Res 112:135–145. doi:10.1016/S0169-328X(03)00059-7
Nakamichi H, Okada T (2006) Crystallographic analysis of primary visual photochemistry. Angew Chem Int Ed Engl 45:4270–3. doi:10.1002/anie.200600595
Nakamura A, Kojima D, Imai H et al (1999) Chimeric nature of pinopsin between rod and cone visual pigments. Biochemistry 38:14738–14745
Nakamura A, Kojima D, Okano T et al (2001) Regulatory mechanism for the stability of the meta II intermediate of pinopsin. J Biochem 129:329–334
Nathans J (1990) Determinants of visual pigment absorbance: identification of the retinylidene Schiff’s base counterion in bovine rhodopsin. Biochemistry 29:9746–52
Okano T, Fukada Y, Artamonov ID, Yoshizawa T (1989) Purification of cone visual pigments from chicken retina. Biochemistry 28:8848–8856. doi:10.1021/bi00448a025
Okano T, Kojima D, Fukada Y et al (1992) Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Proc Natl Acad Sci USA 89:5932–5936
Okano T, Yoshizawa T, Fukada Y (1994) Pinopsin is a chicken pineal photoreceptive molecule. Nature (Lond) 372:94–97. doi:10.1038/372094a0
Palczewski K, Rispoli G, Detwiler PB (1992) The influence of arrestin (48K protein) and rhodopsin kinase on visual transduction. Neuron 8:117–126. doi:10.1016/0896-6273(92)90113-R
Robinson PR, Cohen GB, Zhukovsky EA, Oprian DD (1992) Constitutively active mutants of rhodopsin. Neuron 9:719–25
Röhlich P, Szél A (2000) Photoreceptor cells in the Xenopus retina. Microsc Res Tech 50:327–37. doi:10.1002/1097-0029(20000901)50:5<327::AID-JEMT2>3.0.CO;2-P
Sakai K, Imamoto Y, Su C-Y et al (2012) Photochemical nature of parietopsin. Biochemistry 51:1933–1941. doi:10.1021/bi2018283
Sakmar TP, Franke RR, Khorana HG (1989) Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci USA 86:8309–13
Sakurai K, Onishi A, Imai H et al (2007) Physiological properties of rod photoreceptor cells in green-sensitive cone pigment knock-in mice. J Gen Physiol 130:21–40. doi:10.1085/jgp.200609729
Sato K, Yamashita T, Ohuchi H, Shichida Y (2011) Vertebrate ancient-long opsin has molecular properties intermediate between those of vertebrate and invertebrate visual pigments. Biochemistry 50:10484–10490. doi:10.1021/bi201212z
Sato K, Yamashita T, Imamoto Y, Shichida Y (2012) Comparative studies on the late bleaching processes of four kinds of cone visual pigments and rod visual pigment. Biochemistry 51:4300–4308. doi:10.1021/bi3000885
Schick GA, Cooper TM, Holloway RA et al (1987) Energy storage in the primary photochemical events of rhodopsin and isorhodopsin. Biochemistry 26:2556–2562. doi:10.1021/bi00383a022
Schoenlein RW, Peteanu LA, Mathies RA, Shank CV (1991) The first step in vision: femtosecond isomerization of rhodopsin. Science 254:412–415
Schwanzara SA (1967) The visual pigments of freshwater fishes. Vision Res 7:121–148. doi:10.1016/0042-6989(67)90079-X
Shi Y, Radlwimmer FB, Yokoyama S (2001) Molecular genetics and the evolution of ultraviolet vision in vertebrates. Proc Natl Acad Sci USA 98:11731–11736. doi:10.1073/pnas.201257398
Shichida Y (1999) Visual pigment: photochemistry and molecular evolution. In: Toyoda J, Murakami M, Kaneko A, Saito T (eds) The retinal basis of vision. Elsevier, Amsterdam, pp 23–37
Shichida Y, Imai H (1998) Visual pigment: G-protein-coupled receptor for light signal. J Cell Mol Life Sci 54:1299–1315
Shichida Y, Matsuyama T (2009) Evolution of opsins and phototransduction. Philos Trans R Soc Lond B Biol Sci 364:2881–2895. doi:10.1098/rstb.2009.0051
Shichida Y, Kato T, Sasayama S et al (1990) Effects of chloride on chicken iodopsin and the chromophore transfer reactions from iodopsin. Biochemistry 29:5843–5848
Shichida Y, Okada T, Kandori H et al (1993) Nanosecond laser photolysis of iodopsin, chicken red-sensitive cone visual pigment. Biochemistry 32:10832–10838
Shichida Y, Imai H, Imamoto Y et al (1994) Is chicken green-sensitive cone visual pigment a rhodopsin-like pigment? A comparative study of the molecular properties between chicken green and rhodopsin. Biochemistry 33:9040–9044
Soni BG, Foster RG (1997) A novel and ancient vertebrate opsin. FEBS Lett 406:279–283
Stryer L, Hurley JB, Fung BK-K (1981) Transducin: an amplifier protein in vision. Trends Biochem Sci 6:245–247. doi:10.1016/0968-0004(81)90089-X
Su C-Y, Luo D-G, Terakita A et al (2006) Parietal-eye phototransduction components and their potential evolutionary implications. Science 311:1617–1621. doi:10.1126/science.1123802
Surridge AK, Osorio D, Mundy NI (2003) Evolution and selection of trichromatic vision in primates. Trends Ecol Evol 18:198–205. doi:10.1016/S0169-5347(03)00012-0
Tachibanaki S, Yonetsu S, Fukaya S et al (2012) Low activation and fast inactivation of transducin in carp cones. J Biol Chem 287:41186–41194
Takahashi Y, Ebrey TG (2003) Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment. Biochemistry 42:6025–6034. doi:10.1021/bi020629+
Temple SE, Plate EM, Ramsden S et al (2006) Seasonal cycle in vitamin A1/A2-based visual pigment composition during the life history of coho salmon (Oncorhynchus kisutch). J Comp Physiol A 192:301–313. doi:10.1007/s00359-005-0068-3
Terakita A, Yamashita T, Shichida Y (2000) Highly conserved glutamic acid in the extracellular IV–V loop in rhodopsins acts as the counterion in retinochrome, a member of the rhodopsin family. Proc Natl Acad Sci USA 97:14263–14267. doi:10.1073/pnas.260349597
Terakita A, Yamashita T, Nimbari N et al (2002) Functional interaction between bovine rhodopsin and G protein transducin. J Biol Chem 277:40–46. doi:10.1074/jbc.M104960200
Terakita A, Koyanagi M, Tsukamoto H et al (2004) Counterion displacement in the molecular evolution of the rhodopsin family. Nat Struct Mol Biol 11:284–9. doi:10.1038/nsmb731
Tsin ATC, Beatty DD (1980) Visual pigments and vitamins A in the adult bullfrog. Exp Eye Res 30:143–153. doi:10.1016/0014-4835(80)90108-6
Tsukamoto H, Farrens DL, Koyanagi M, Terakita A (2009) The magnitude of the light-induced conformational change in different rhodopsins correlates with their ability to activate G proteins. J Biol Chem 284:20676–20683. doi:10.1074/jbc.M109.016212
Tsutsui K, Shichida Y (2010) Multiple functions of Schiff base counterion in rhodopsins. Photochem Photobiol Sci 9:1426. doi:10.1039/c0pp00134a
Tsutsui K, Imai H, Shichida Y (2008) E113 is required for the efficient photoisomerization of the unprotonated chromophore in a UV-absorbing visual pigment. Biochemistry 47:10829–10833. doi:10.1021/bi801377v
Vogel R, Siebert F, Mathias G et al (2003) Deactivation of rhodopsin in the transition from the signaling state meta II to meta III involves a thermal isomerization of the retinal chromophore CN double bond. Biochemistry 42:9863–9874. doi:10.1021/bi034684+
Vought BW, Dukkipatti A, Max M et al (1999) Photochemistry of the primary event in short-wavelength visual opsins at low temperature. Biochemistry 38:11287–11297. doi:10.1021/bi990968b
Wakefield MJ, Anderson M, Chang E et al (2008) Cone visual pigments of monotremes: filling the phylogenetic gap. Vis Neurosci 25:257–264. doi:10.1017/S0952523808080255
Wang Z, Asenjo AB, Oprian DD (1993) Identification of the Cl−-binding site in the human red and green color vision pigments. Biochemistry 32:2125–2130
Yamashita T, Ohuchi H, Tomonari S et al (2010) Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proc Natl Acad Sci USA 107:22084–22089. doi:10.1073/pnas.1012498107
Yamashita T, Nakamura S, Tsutsui K et al (2013) Chloride-dependent spectral tuning mechanism of L-group cone visual pigments. Biochemistry. doi:10.1021/bi3016058
Yokoyama S (1994) Gene duplications and evolution of the short wavelength-sensitive visual pigments in vertebrates. Mol Biol Evol 11:32–39
Yokoyama S (2000) Molecular evolution of vertebrate visual pigments. Prog Retin Eye Res 19:385–419
Yoshizawa T (1994) Molecular basis for color vision. Biophys Chem 50:17–24
Yoshizawa T, Shichida Y (1982) Low-temperature spectrophotometry of intermediates of rhodopsin. Methods Enzymol 81:333–354
Yoshizawa T, Wald G (1963) Pre-lumirhodopsin and the bleaching of visual pigments. Nature (Lond) 197:1279–1286
Yoshizawa T, Wald G (1967) Photochemistry of iodopsin. Nature (Lond) 214:566–571. doi:10.1038/214566a0
Zimmermann K, Ritter E, Bartl FJ et al (2004) Interaction with transducin depletes metarhodopsin III: a regulated retinal storage in visual signal transduction? J Biol Chem 279:48112–48119. doi:10.1074/jbc.M406856200
Zhukovsky EA, Oprian DD (1989) Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science 246:928–930
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Japan
About this chapter
Cite this chapter
Sato, K., Shichida, Y. (2014). Evolution and Diversity of Visual Pigments in Connection with Their Functional Differences. In: Furukawa, T., Hurley, J., Kawamura, S. (eds) Vertebrate Photoreceptors. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54880-5_1
Download citation
DOI: https://doi.org/10.1007/978-4-431-54880-5_1
Published:
Publisher Name: Springer, Tokyo
Print ISBN: 978-4-431-54879-9
Online ISBN: 978-4-431-54880-5
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)