Molecular Mechanisms of the Function of Pineal Organs

  • Daisuke Kojima
  • Yoshitaka Fukada


The pineal organ in nonmammalian species is a light-sensitive brain structure mediating photosensory and photoendocrine functions. This chapter reviews the photopigments and the phototransduction pathways in the pineal organs of chicken, teleosts, and lamprey and those in the pineal-related organ, the parietal eye, of lizard. Chicken pinealocytes contain a rhodopsin-like molecules, pinopsin, which activates a G protein, transducin, in a light-dependent manner resulting in acute suppression of melatonin synthesis within the cells. Pinopsin is dominantly expressed in the avian and reptilian pineal organs, whereas teleost pineal organs have another rhodopsin-like molecule, exo-rhodopsin, instead of pinopsin. The pineal organs of lampreys exhibit antagonistic responses to green and UV light at the interneuron level: This UV response is mediated by parapinopsin in the photoreceptor cells. In lizards, the parietal eye photoreceptor cells show antagonistic responses to green and blue light at the photoreceptor cell level: parietopsin and pinopsin are likely to antagonistically regulate a cGMP pathway to elicit the responses. This chapter also introduces a more recent topic on a new pineal function as producing a neurosteroid, 7α-hydroxypregnenolone, that regulates behavioral activities in some species.


7α-Hydroxypregnenolone Exo-rhodopsin Parapinopsin Parietopsin Pinopsin 


  1. Arendt J, Skene DJ (2005) Melatonin as a chronobiotic. Sleep Med Rev 9(1):25–39. doi: 10.1016/j.smrv.2004.05.002 PubMedCrossRefGoogle Scholar
  2. Asaoka Y, Mano H, Kojima D, Fukada Y (2002) Pineal expression-promoting element (PIPE), a cis-acting element, directs pineal-specific gene expression in zebrafish. Proc Natl Acad Sci USA 99(24):15456–15461. doi: 10.1073/pnas.232444199 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bailey MJ, Cassone VM (2005) Melanopsin expression in the chick retina and pineal gland. Brain Res Mol Brain Res 134(2):345–348. doi: 10.1016/j.molbrainres.2004.11.003 PubMedCrossRefGoogle Scholar
  4. Bellingham J, Tarttelin EE, Foster RG, Wells DJ (2003) Structure and evolution of the teleost extraretinal rod-like opsin (errlo) and ocular rod opsin (rho) genes: is teleost rho a retrogene? J Exp Zool B Mol Dev Evol 297(1):1–10. doi: 10.1002/jez.b.18 PubMedCrossRefGoogle Scholar
  5. Bellingham J, Chaurasia SS, Melyan Z, Liu C, Cameron MA, Tarttelin EE, Iuvone PM, Hankins MW, Tosini G, Lucas RJ (2006) Evolution of melanopsin photoreceptors: discovery and characterization of a new melanopsin in nonmammalian vertebrates. PLoS Biol 4(8):e254. doi: 10.1371/journal.pbio.0040254 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Binkley SA, Riebman JB, Reilly KB (1978) The pineal gland: a biological clock in vitro. Science 202(4373):1198–1120PubMedCrossRefGoogle Scholar
  7. Blackshaw S, Snyder SH (1997) Parapinopsin, a novel catfish opsin localized to the parapineal organ, defines a new gene family. J Neurosci 17(21):8083–8092PubMedGoogle Scholar
  8. Cassone VM, Paulose JK, Whitfield-Rucker MG, Peters JL (2009) Time's arrow flies like a bird: two paradoxes for avian circadian biology. Gen Comp Endocrinol 163(1-2):109–116. doi: 10.1016/j.ygcen.2009.01.003 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Chaurasia SS, Rollag MD, Jiang G, Hayes WP, Haque R, Natesan A, Zatz M, Tosini G, Liu C, Korf HW, Iuvone PM, Provencio I (2005) Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. J Neurochem 92(1):158–170. doi: 10.1111/j.1471-4159.2004.02874.x PubMedCrossRefGoogle Scholar
  10. Chinen A, Hamaoka T, Yamada Y, Kawamura S (2003) Gene duplication and spectral diversification of cone visual pigments of zebrafish. Genetics 163(2):663–675PubMedCentralPubMedGoogle Scholar
  11. Deguchi T (1979a) A circadian oscillator in cultured cells of chicken pineal gland. Nature (Lond) 282(5734):94–96CrossRefGoogle Scholar
  12. Deguchi T (1979b) Circadian rhythm of serotonin N-acetyltransferase activity in organ culture of chicken pineal gland. Science 203(4386):1245–1247PubMedCrossRefGoogle Scholar
  13. Deguchi T (1979c) Role of adenosine 3',5'-monophosphate in the regulation of circadian oscillation of serotonin N-acetyltransferase activity in cultured chicken pineal gland. J Neurochem 33(1):45–51PubMedCrossRefGoogle Scholar
  14. Deguchi T (1981) Rhodopsin-like photosensitivity of isolated chicken pineal gland. Nature (Lond) 290(5808):706–707CrossRefGoogle Scholar
  15. Dodt E (1963) Photosensitivity of the pineal organ in the teleost, Salmo irideus (Gibbons). Experientia (Basel) 19:642–643CrossRefGoogle Scholar
  16. Dodt E, Scherer E (1968) Photic responses from the parietal eye of the lizard Lacerta sicula campestris (De Betta). Vision Res 8(1):61–72. doi: 10.1016/0042-6989(68)90064-3 CrossRefGoogle Scholar
  17. Doi M, Nakajima Y, Okano T, Fukada Y (2001) Light-induced phase-delay of the chicken pineal circadian clock is associated with the induction of cE4bp4, a potential transcriptional repressor of cPer2 gene. Proc Natl Acad Sci USA 98(14):8089–8094. doi: 10.1073/pnas.141090998 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Doi M, Okano T, Yujnovsky I, Sassone-Corsi P, Fukada Y (2004) Negative control of circadian clock regulator E4BP4 by casein kinase Iepsilon-mediated phosphorylation. Curr Biol 14(11):975–980. doi: 10.1016/j.cub.2004.05.043 PubMedCrossRefGoogle Scholar
  19. Ebrey T, Koutalos Y (2001) Vertebrate photoreceptors. Prog Retin Eye Res 20(1):49–94PubMedCrossRefGoogle Scholar
  20. Ekstrom P, Meissl H (2003) Evolution of photosensory pineal organs in new light: the fate of neuroendocrine photoreceptors. Philos Trans R Soc Lond B Biol Sci 358(1438):1679–1700. doi: 10.1098/rstb.2003.1303 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Finn JT, Solessio EC, Yau KW (1997) A cGMP-gated cation channel in depolarizing photoreceptors of the lizard parietal eye. Nature (Lond) 385(6619):815–819. doi: 10.1038/385815a0 CrossRefGoogle Scholar
  22. Gaston S, Menaker M (1968) Pineal function: the biological clock in the sparrow? Science 160(3832):1125–1127PubMedCrossRefGoogle Scholar
  23. Hatori M, Hirota T, Iitsuka M, Kurabayashi N, Haraguchi S, Kokame K, Sato R, Nakai A, Miyata T, Tsutsui K, Fukada Y (2011) Light-dependent and circadian clock-regulated activation of sterol regulatory element-binding protein, X-box-binding protein 1, and heat shock factor pathways. Proc Natl Acad Sci USA 108(12):4864–4869. doi: 10.1073/pnas.1015959108 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Hirunagi K, Ebihara S, Okano T, Takanaka Y, Fukada Y (1997) Immunoelectron-microscopic investigation of the subcellular localization of pinopsin in the pineal organ of the chicken. Cell Tissue Res 289(2):235–241PubMedCrossRefGoogle Scholar
  25. Holthues H, Engel L, Spessert R, Vollrath L (2005) Circadian gene expression patterns of melanopsin and pinopsin in the chick pineal gland. Biochem Biophys Res Commun 326(1):160–165. doi: 10.1016/j.bbrc.2004.11.022 PubMedCrossRefGoogle Scholar
  26. Imai H, Kojima D, Oura T, Tachibanaki S, Terakita A, Shichida Y (1997) Single amino acid residue as a functional determinant of rod and cone visual pigments. Proc Natl Acad Sci USA 94(6):2322–2326. doi: 10.1073/pnas.94.6.2322 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Kasahara T, Okano T, Yoshikawa T, Yamazaki K, Fukada Y (2000) Rod-type transducin alpha-subunit mediates a phototransduction pathway in the chicken pineal gland. J Neurochem 75(1):217–224PubMedCrossRefGoogle Scholar
  28. Kasahara T, Okano T, Haga T, Fukada Y (2002) Opsin-G11-mediated signaling pathway for photic entrainment of the chicken pineal circadian clock. J Neurosci 22(17):7321–7325PubMedGoogle Scholar
  29. Kasal CA, Menaker M, Perez-Polo JR (1979) Circadian clock in culture: N-acetyltransferase activity of chick pineal glands oscillates in vitro. Science 203(4381):656–658PubMedCrossRefGoogle Scholar
  30. Kawamura S, Yokoyama S (1997) Expression of visual and nonvisual opsins in American chameleon. Vision Res 37(14):1867–1871PubMedCrossRefGoogle Scholar
  31. Kawamura S, Blow NS, Yokoyama S (1999) Genetic analyses of visual pigments of the pigeon (Columba livia). Genetics 153(4):1839–1850PubMedCentralPubMedGoogle Scholar
  32. Kawano-Yamashita E, Terakita A, Koyanagi M, Shichida Y, Oishi T, Tamotsu S (2007) Immunohistochemical characterization of a parapinopsin-containing photoreceptor cell involved in the ultraviolet/green discrimination in the pineal organ of the river lamprey Lethenteron japonicum. J Exp Biol 210(pt 21):3821–3829. doi: 10.1242/jeb.007161 PubMedCrossRefGoogle Scholar
  33. Klein DC (1985) Photoneural regulation of the mammalian pineal gland. Ciba Found Symp 117:38–56PubMedGoogle Scholar
  34. Kojima D, Mano H, Fukada Y (2000) Vertebrate ancient-long opsin: a green-sensitive photoreceptive molecule present in zebrafish deep brain and retinal horizontal cells. J Neurosci 20(8):2845–2851PubMedGoogle Scholar
  35. Kojima D, Torii M, Fukada Y, Dowling JE (2008) Differential expression of duplicated VAL-opsin genes in the developing zebrafish. J Neurochem 104(5):1364–1371. doi: 10.1111/j.1471-4159.2007.05093.x PubMedCentralPubMedCrossRefGoogle Scholar
  36. Kojima D, Mori S, Torii M, Wada A, Morishita R, Fukada Y (2011) UV-sensitive photoreceptor protein OPN5 in humans and mice. PloS One 6(10):e26388. doi: 10.1371/journal.pone.0026388 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Koyanagi M, Kawano E, Kinugawa Y, Oishi T, Shichida Y, Tamotsu S, Terakita A (2004) Bistable UV pigment in the lamprey pineal. Proc Natl Acad Sci USA 101(17):6687–6691. doi: 10.1073/pnas.0400819101 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Koyanagi M, Kubokawa K, Tsukamoto H, Shichida Y, Terakita A (2005) Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr Biol 15(11):1065–1069. doi: 10.1016/j.cub.2005.04.063 PubMedCrossRefGoogle Scholar
  39. Kuwayama S, Imai H, Hirano T, Terakita A, Shichida Y (2002) Conserved proline residue at position 189 in cone visual pigments as a determinant of molecular properties different from rhodopsins. Biochemistry 41(51):15245–15252. doi: 10.1021/Bi026444k Google Scholar
  40. Mano H, Kojima D, Fukada Y (1999) Exo-rhodopsin: a novel rhodopsin expressed in the zebrafish pineal gland. Brain Res Mol Brain Res 73(1-2):110–118PubMedCrossRefGoogle Scholar
  41. Matsushita A, Yoshikawa T, Okano T, Kasahara T, Fukada Y (2000) Colocalization of pinopsin with two types of G-protein alpha-subunits in the chicken pineal gland. Cell Tissue Res 299(2):245–251PubMedGoogle Scholar
  42. Max M, Menaker M (1992) Regulation of melatonin production by light, darkness, and temperature in the trout pineal. J Comp Physiol A 170(4):479–489PubMedCrossRefGoogle Scholar
  43. Max M, McKinnon PJ, Seidenman KJ, Barrett RK, Applebury ML, Takahashi JS, Margolskee RF (1995) Pineal opsin: a nonvisual opsin expressed in chick pineal. Science 267(5203):1502–1506PubMedCrossRefGoogle Scholar
  44. Max M, Surya A, Takahashi JS, Margolskee RF, Knox BE (1998) Light-dependent activation of rod transducin by pineal opsin. J Biol Chem 273(41):26820–26826. doi: 10.1074/jbc.273.41.26820 PubMedCrossRefGoogle Scholar
  45. Meissl H, Ekstrom P (1988) Photoreceptor responses to light in the isolated pineal organ of the trout, Salmo gairdneri. Neuroscience 25(3):1071–1076PubMedCrossRefGoogle Scholar
  46. Miller WH, Wolbarsht ML (1962) Neural activity in the parietal eye of a lizard. Science 135(3500):316–317PubMedCrossRefGoogle Scholar
  47. Morita Y, Dodt E (1973) Slow photic responses of the isolated pineal organ of lamprey. Nova Acta Leopold 38:331–339Google Scholar
  48. Nakamura A, Kojima D, Imai H, Terakita A, Okano T, Shichida Y, Fukada Y (1999) Chimeric nature of pinopsin between rod and cone visual pigments. Biochemistry 38(45):14738–14745. doi: 10.1021/bi9913496 PubMedCrossRefGoogle Scholar
  49. Okano T, Fukada Y (2003) Chicktacking pineal clock. J Biochem (Tokyo) 134(6):791–797. doi: 10.1093/jb/mvg221 CrossRefGoogle Scholar
  50. Okano T, Yoshizawa T, Fukada Y (1994) Pinopsin is a chicken pineal photoreceptive molecule. Nature (Lond) 372(6501):94–97. doi: 10.1038/372094a0 CrossRefGoogle Scholar
  51. Okano T, Yamazaki K, Kasahara T, Fukada Y (1997) Molecular cloning of heterotrimeric G-protein alpha-subunits in chicken pineal gland. J Mol Evol 44(suppl 1):S91–S97PubMedCrossRefGoogle Scholar
  52. Oksche A (1965) Survey of the development and comparative morphology of the pineal organ. Prog Brain Res 10:3–29PubMedCrossRefGoogle Scholar
  53. Philp AR, Bellingham J, Garcia-Fernandez J, Foster RG (2000a) A novel rod-like opsin isolated from the extra-retinal photoreceptors of teleost fish. FEBS Lett 468(2-3):181–188PubMedCrossRefGoogle Scholar
  54. Philp AR, Garcia-Fernandez JM, Soni BG, Lucas RJ, Bellingham J, Foster RG (2000b) Vertebrate ancient (VA) opsin and extraretinal photoreception in the Atlantic salmon (Salmo salar). J Exp Biol 203(pt 12):1925–1936PubMedGoogle Scholar
  55. Refinetti R, Menaker M (1992) The circadian rhythm of body temperature. Physiol Behav 51(3):613–637PubMedCrossRefGoogle Scholar
  56. Rennison DJ, Owens GL, Taylor JS (2012) Opsin gene duplication and divergence in ray-finned fish. Mol Phylogenet Evol 62(3):986–1008. doi: 10.1016/j.ympev.2011.11.030 PubMedCrossRefGoogle Scholar
  57. Robinson J, Schmitt EA, Dowling JE (1995) Temporal and spatial patterns of opsin gene expression in zebrafish (Danio rerio). Vis Neurosci 12(5):895–906PubMedCrossRefGoogle Scholar
  58. Shichida Y, Imai H (1998) Visual pigment: G-protein-coupled receptor for light signals. Cell Mol Life Sci 54(12):1299–1315PubMedCrossRefGoogle Scholar
  59. Simonneaux V, Ribelayga C (2003) Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 55(2):325–395. doi: 10.1124/pr.55.2.2 PubMedCrossRefGoogle Scholar
  60. Solessio E, Engbretson GA (1993) Antagonistic chromatic mechanisms in photoreceptors of the parietal eye of lizards. Nature (Lond) 364(6436):442–445. doi: 10.1038/364442a0 CrossRefGoogle Scholar
  61. Su CY, Luo DG, Terakita A, Shichida Y, Liao HW, Kazmi MA, Sakmar TP, Yau KW (2006) Parietal-eye phototransduction components and their potential evolutionary implications. Science 311(5767):1617–1621. doi: 10.1126/science.1123802 PubMedCrossRefGoogle Scholar
  62. Tamotsu S, Korf HW, Morita Y, Oksche A (1990) Immunocytochemical localization of serotonin and photoreceptor-specific proteins (rod-opsin, S-antigen) in the pineal complex of the river lamprey, Lampetra japonica, with special reference to photoneuroendocrine cells. Cell Tissue Res 262(2):205–216PubMedCrossRefGoogle Scholar
  63. Tamotsu S, Oishi T, Nakao K, Fukada Y, Shichida Y, Yoshizawa T, Morita Y (1994) Localization of iodopsin and rod-opsin immunoreactivity in the retina and pineal complex of the river lamprey, Lampetra japonica. Cell Tissue Res 278(1):1–10. doi: 10.1007/s004410050188 CrossRefGoogle Scholar
  64. Taniguchi Y, Hisatomi O, Yoshida M, Tokunaga F (2001) Pinopsin expressed in the retinal photoreceptors of a diurnal gecko. FEBS Lett 496(2-3):69–74PubMedCrossRefGoogle Scholar
  65. Tarttelin EE, Fransen MP, Edwards PC, Hankins MW, Schertler GF, Vogel R, Lucas RJ, Bellingham J (2011) Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced meta II decay. Cell Mol Life Sci 68(22):3713–3723. doi: 10.1007/s00018-011-0665-y PubMedCentralPubMedCrossRefGoogle Scholar
  66. Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y (2003) Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res 13(3):382–390. doi: 10.1101/gr.640303 PubMedCentralPubMedCrossRefGoogle Scholar
  67. Terakita A, Tsukamoto H, Koyanagi M, Sugahara M, Yamashita T, Shichida Y (2008) Expression and comparative characterization of Gq-coupled invertebrate visual pigments and melanopsin. J Neurochem 105(3):883–890. doi: 10.1111/j.1471-4159.2007.05184.x PubMedCrossRefGoogle Scholar
  68. Torii M, Kojima D, Okano T, Nakamura A, Terakita A, Shichida Y, Wada A, Fukada Y (2007) Two isoforms of chicken melanopsins show blue light sensitivity. FEBS Lett 581(27):5327–5331. doi: 10.1016/j.febslet.2007.10.019 PubMedCrossRefGoogle Scholar
  69. Uchida K, Morita Y (1994) Spectral sensitivity and mechanism of interaction between inhibitory and excitatory responses of photosensory pineal neurons. Pflugers Arch 427(3-4):373–377. doi: 10.1007/BF00374547 PubMedCrossRefGoogle Scholar
  70. van Veen T, Ostholm T, Gierschik P, Spiegel A, Somers R, Korf HW, Klein DC (1986) alpha-Transducin immunoreactivity in retinae and sensory pineal organs of adult vertebrates. Proc Natl Acad Sci USA 83(4):912–916PubMedCentralPubMedCrossRefGoogle Scholar
  71. Wada S, Kawano-Yamashita E, Koyanagi M, Terakita A (2012) Expression of UV-sensitive parapinopsin in the iguana parietal eyes and its implication in UV-sensitivity in vertebrate pineal-related organs. PloS One 7(6):e39003. doi: 10.1371/journal.pone.0039003 PubMedCentralPubMedCrossRefGoogle Scholar
  72. Xiong WH, Solessio EC, Yau KW (1998) An unusual cGMP pathway underlying depolarizing light response of the vertebrate parietal-eye photoreceptor. Nat Neurosci 1(5):359–365. doi: 10.1038/1570 PubMedCrossRefGoogle Scholar
  73. Yamashita T, Ohuchi H, Tomonari S, Ikeda K, Sakai K, Shichida Y (2010) Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proc Natl Acad Sci USA 107(51):22084–22089. doi: 10.1073/pnas.1012498107 PubMedCentralPubMedCrossRefGoogle Scholar
  74. Zatz M (1994) Photoendocrine transduction in cultured chick pineal cells: IV. What do vitamin A depletion and retinaldehyde addition do to the effects of light on the melatonin rhythm? J Neurochem 62(5):2001–2011PubMedCrossRefGoogle Scholar
  75. Zatz M, Mullen DA (1988) Two mechanisms of photoendocrine transduction in cultured chick pineal cells: pertussis toxin blocks the acute but not the phase-shifting effects of light on the melatonin rhythm. Brain Res 453(1-2):63–71PubMedCrossRefGoogle Scholar
  76. Ziv L, Tovin A, Strasser D, Gothilf Y (2007) Spectral sensitivity of melatonin suppression in the zebrafish pineal gland. Exp Eye Res 84(1):92–99. doi: 10.1016/j.exer.2006.09.004 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
  2. 2.Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO)KawaguchiJapan

Personalised recommendations