Photoreceptor Transplantation and Regeneration

  • Valeria MarigoEmail author
  • Simona Casarosa


A recent study showed that an electronic chip implanted under the human retina restored some extent of vision to a blind patient. Because the device was implanted where the light-sensitive cells, the photoreceptors, should have been, this study demonstrated that it is possible to take advantage of the internal circuitry of the retina even in the absence of photoreceptors and in the presence of extensive glial and neuronal reorganization. This result strongly supports the development of cell replacement therapies for the cure of photoreceptor degeneration, provided that the cells are implanted in the same anatomical location. First, similar to other sensory neurons but in contrast to neurons lost in most degenerative diseases, photoreceptors are the first neurons of the circuit and only have to make efferent connections. Second, photoreceptors are histologically located in a restricted region of the organ. These features make them the most immediately transplantable type of neuron and interesting candidates for clinical trials involving cell transplantation.

In cell replacement therapies, the identification of the source of cells able to integrate and connect to the host tissue must be defined. For the retina, cells showing the best survival and integration rates are postmitotic rod precursors, rather than immature retinal progenitors. Given the difficulty of obtaining human fetal cells, many studies are undertaking differentiation of cells with such features starting from stem cells. Three main classes of stem cells are under investigation to be sources for in vitro photoreceptor generation: embryonic stem cells, induced pluripotent stem cells, and adult retinal stem cells. This chapter describes the current preclinical studies for in vitro generation and subsequent transplantation of photoreceptor precursors.


ES cells iPS cells Müller glia Photoreceptor precursors Retinal stem cells Transplantation 


  1. Ahmad I, Tang L, Pham H (2000) Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun 270:517–521. doi: 10.1006/bbrc.2000.2473 PubMedCrossRefGoogle Scholar
  2. Ahmad I, De Debbio CB, Das AV, Parameswaran S (2011) Müller glia: a promising target for therapeutic regeneration. Invest Ophthalmol Vis Sci 52:5758–5764. doi: 10.1167/iovs.11-7308 PubMedCrossRefGoogle Scholar
  3. Aruta C, Giordano F, De Marzo A et al (2011) In vitro differentiation of retinal pigment epithelium from adult retinal stem cells. Pigment Cell Melanoma Res 24:233–240. doi: 10.1111/j.1755-148X.2010.00793.x PubMedCrossRefGoogle Scholar
  4. Ashery-Padan R, Marquardt T, Zhou X, Gruss P (2000) Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye. Genes Dev 14:2701–11PubMedCentralPubMedCrossRefGoogle Scholar
  5. Ballios BG, Cooke MJ, Van der Kooy D, Shoichet MS (2010) A hydrogel-based stem cell delivery system to treat retinal degenerative diseases. Biomaterials 31:2555–2564. doi: 10.1016/j.biomaterials.2009.12.004 PubMedCrossRefGoogle Scholar
  6. Ballios BG, Clarke L, Coles BLK et al (2012) The adult retinal stem cell is a rare cell in the ciliary epithelium whose progeny can differentiate into photoreceptors. Biol Open 1:237–246. doi: 10.1242/bio.2012027 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Barber AC, Hippert C, Duran Y et al (2013) Repair of the degenerate retina by photoreceptor transplantation. Proc Natl Acad Sci USA 110:354–359. doi: 10.1073/pnas.1212677110/-/ PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bartsch U, Oriyakhel W, Kenna PF et al (2008) Retinal cells integrate into the outer nuclear layer and differentiate into mature photoreceptors after subretinal transplantation into adult mice. Exp Eye Res 86:691–700. doi: 10.1016/j.exer.2008.01.018 PubMedCrossRefGoogle Scholar
  9. Boucherie C, Mukherjee S, Henckaerts E, Thrasher AJ, Sowden JC, Ali RR (2013) Brief report: self-organizing neuroepithelium from human pluripotent stem cells facilitates derivation of photoreceptors. Stem Cells 31:408–414. doi: 10.1002/stem.1268 PubMedCrossRefGoogle Scholar
  10. Carter-Dawson LD, LaVail MM (1979) Rods and cones in the mouse retina. II. Autoradiographic analysis of cell generation using tritiated thymidine. J Comp Neurol 188:263–272. doi: 10.1002/cne.901880205 PubMedCrossRefGoogle Scholar
  11. Cicero SA, Johnson D, Reyntjens S et al (2009) Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells. Proc Natl Acad Sci USA 106:6685–6690PubMedCentralPubMedCrossRefGoogle Scholar
  12. Coles BLK, Angenieux B, Inoue T et al (2004) Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci USA 101:15772–15777PubMedCentralPubMedCrossRefGoogle Scholar
  13. Coles BLK, Horsford DJ, McInnes RR, Van der Kooy D (2006) Loss of retinal progenitor cells leads to an increase in the retinal stem cell population in vivo. Eur J Neurosci 23:75–82. doi: 10.1111/j.1460-9568.2005.04537.x PubMedCrossRefGoogle Scholar
  14. Das AV, Mallya KB, Zhao X et al (2006) Neural stem cell properties of Müller glia in the mammalian retina: regulation by Notch and Wnt signaling. Dev Biol 299:283–302. doi: 10.1016/j.ydbio.2006.07.029 PubMedCrossRefGoogle Scholar
  15. De Marzo A, Aruta C, Marigo V (2010) PEDF promotes retinal neurosphere formation and expansion in vitro. Adv Exp Med Biol 664:621–630PubMedCrossRefGoogle Scholar
  16. Del Debbio CB, Balasubramanian S, Parameswaran S et al (2010) Notch and Wnt signaling mediated rod photoreceptor regeneration by Müller cells in adult mammalian retina. PLoS One 5:e12425. doi: 10.1371/journal.pone.0012425 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Demontis GC, Aruta C, Comitato A, et al (2012) Functional and molecular characterization of rod-like cells from retinal stem cells derived from the adult ciliary epithelium. PLoS One 7:e33338. doi: 10.1371/journal.pone.0033338 PONE-D-11-14163 [pii]
  18. Dunwoodie SL (2009) The role of hypoxia in development of the mammalian embryo. Dev Cell 17:755–773. doi: 10.1016/j.devcel.2009.11.008 PubMedCrossRefGoogle Scholar
  19. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature (Lond) 472:51–56. doi: 10.1038/nature09941 CrossRefGoogle Scholar
  20. Fausett BV, Gumerson JD, Goldman D (2008) The proneural basic helix-loop-helix gene Ascl1a is required for retina regeneration. J Neurosci 28:1109–1117. doi: 10.1523/JNEUROSCI.4853-07.2008 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Feigenspan A, Bormann J, Wassle H (1993) Organotypic slice culture of the mammalian retina. Vis Neurosci 10:203e17Google Scholar
  22. Fischer AJ, McGuire CR, Dierks BD, Reh TA (2002) Insulin and fibroblast growth factor 2 activate a neurogenic program in Müller glia of the chicken retina. J Neurosci 22:9387–9398PubMedGoogle Scholar
  23. Furukawa T, Morrow EM, Cepko CL (1997) Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91:531–541PubMedCrossRefGoogle Scholar
  24. Garita-Hernández M, Diaz-Corrales F, Lukovic D et al (2013) Hypoxia increases the yield of photoreceptors differentiating from mouse embryonic stem cells and improves the modeling of retinogenesis in vitro. Stem Cells 31:966–978. doi: 10.1002/stem.1339 PubMedCrossRefGoogle Scholar
  25. Ghosh F, Ehinger B (2000) Full-thickness retinal transplants: a review. Ophthalmologica 214:54–69PubMedCrossRefGoogle Scholar
  26. Giannelli SG, Demontis GC, Pertile G et al (2011) Adult human Müller glia cells are a highly efficient source of rod photoreceptors. Stem Cells 29:344–356. doi: 10.1002/stem.579.Photoreceptor PubMedCrossRefGoogle Scholar
  27. Goodell MA, Brose K, Paradis G et al (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806PubMedCrossRefGoogle Scholar
  28. Gu P, Harwood LJ, Zhang X et al (2007) Isolation of retinal progenitor and stem cells from the porcine eye. Mol Vis 13:1045–1057PubMedCentralPubMedGoogle Scholar
  29. Gualdoni S, Baron M, Lakowski J et al (2010) Adult ciliary epithelial cells, previously identified as retinal stem cells with potential for retinal repair, fail to differentiate into new rod photoreceptors. Stem Cells 28:1048–1059PubMedCrossRefGoogle Scholar
  30. Hambright D, Park KY, Brooks M et al (2012) Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina. Mol Vis 18:920–936PubMedCentralPubMedGoogle Scholar
  31. Ikeda H, Osakada F, Watanabe K et al (2005) Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci USA 102:11331–11336. doi: 10.1073/pnas.0500010102 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Inoue Y, Yanagi Y, Tamaki Y et al (2005) Clonogenic analysis of ciliary epithelial derived retinal progenitor cells in rabbits. Exp Eye Res 81:437–445. doi: 10.1016/j.exer.2005.03.003 PubMedCrossRefGoogle Scholar
  33. Jadhav AP, Mason HA, Cepko CL (2006) Notch 1 inhibits photoreceptor production in the developing mammalian retina. Development (Camb) 133:913–923CrossRefGoogle Scholar
  34. Lakowski J, Baron M, Bainbridge J et al (2010) Cone and rod photoreceptor transplantation in models of the childhood retinopathy Leber congenital amaurosis using flow-sorted Crx-positive donor cells. Hum Mol Genet 19:4545–4559. doi: 10.1093/hmg/ddq378 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Lakowski J, Han Y-T, Pearson RA et al (2011) Effective transplantation of photoreceptor precursor cells selected via cell surface antigen expression. Stem Cells 29:1391–1404. doi: 10.1002/stem.694 PubMedCentralPubMedGoogle Scholar
  36. Lamba DA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci USA 103:12769–12774. doi: 10.1073/pnas.0601990103 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Lamba D, Karl M, Reh T (2008) Neural regeneration and cell replacement: a view from the eye. Cell Stem Cell 2:538–549. doi: 10.1016/j.stem.2008.05.002 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Lamba DA, Gust J, Reh TA (2009) Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 4:73–79. doi: 10.1016/j.stem.2008.10.015 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Lamba DA, McUsic A, Hirata RK et al (2010) Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 5:e8763. doi: 10.1371/journal.pone.0008763 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Locker M, Borday C, Perron M (2009) Stemness or not stemness? Current status and perspectives of adult retinal stem cells. Curr Stem Cell Res Ther 4:118–130PubMedCrossRefGoogle Scholar
  41. MacLaren RE, Pearson RA, MacNeil A et al (2006) Retinal repair by transplantation of photoreceptor precursors. Nature (Lond) 444:203–207. doi: 10.1038/nature05161 CrossRefGoogle Scholar
  42. McUsic AC, Lamba DA, Reh TA (2012) Guiding the morphogenesis of dissociated newborn mouse retinal cells and hES cell-derived retinal cells by soft lithography-patterned microchannel PLGA scaffolds. Biomaterials 33:1396–1405. doi: 10.1016/j.biomaterials.2011.10.083 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Mellough CB, Sernagor E, Moreno-Gimeno I et al (2012) Efficient stage-specific differentiation of human pluripotent stem cells toward retinal photoreceptor cells. Stem Cells 30:673–686. doi: 10.1002/stem.1037 PubMedCrossRefGoogle Scholar
  44. Meyer JS, Shearer RL, Capowski EE et al (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci USA 106:16698–16703. doi: 10.1073/pnas.0905245106 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Meyer JS, Howden SE, Wallace KA et al (2011) Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 29:1206–1218. doi: 10.1002/stem.674 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785. doi: 10.1016/j.stem.2012.05.009 PubMedCrossRefGoogle Scholar
  47. Ogilvie JM, Speck JD, Lett JM, Fleming TT (1999) A reliable method for organ culture of neonatal mouse retina with long-term survival. J Neurosci Methods 87:57–65PubMedCrossRefGoogle Scholar
  48. Osakada F, Ooto S, Akagi T et al (2007) Wnt signaling promotes regeneration in the retina of adult mammals. J Neurosci 27:4210–4219. doi: 10.1523/JNEUROSCI.4193-06.2007 PubMedCrossRefGoogle Scholar
  49. Osakada F, Ikeda H, Mandai M et al (2008) Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 26:215–224. doi: 10.1038/nbt1384 PubMedCrossRefGoogle Scholar
  50. Osakada F, Jin Z-B, Hirami Y et al (2009) In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 122:3169–3179. doi: 10.1242/jcs.050393 PubMedCrossRefGoogle Scholar
  51. Pearson RA, Barber AC, Rizzi M et al (2012) Restoration of vision after transplantation of photoreceptors. Nature (Lond) 485:99–103. doi: 10.1038/nature10997 CrossRefGoogle Scholar
  52. Pera EM, Wessely O, Li SY, De Robertis EM (2001) Neural and head induction by insulin-like growth factor signals. Dev Cell 1:655–665PubMedCrossRefGoogle Scholar
  53. Pollak J, Wilken MS, Ueki Y et al (2013) Ascl1 reprograms mouse Müller glia into neurogenic retinal progenitors. Development (Camb) 140:2619–2631. doi: 10.1242/dev.091355 CrossRefGoogle Scholar
  54. Ramachandran R, Fausett BV, Goldman D (2010) Ascl1a regulates Müller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nat Cell Biol 12:1101–1107. doi: 10.1038/ncb2115 PubMedCentralPubMedCrossRefGoogle Scholar
  55. Singh MS, Charbel Issa P, Butler R et al (2013) Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation. Proc Natl Acad Sci USA 110:1101–1106. doi: 10.1073/pnas.1119416110 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. Google Scholar
  57. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefGoogle Scholar
  58. Tropepe V, Coles BLK, Chiasson BJ et al (2000) Retinal stem cells in the adult mammalian eye. Science 287:2032–2036PubMedCrossRefGoogle Scholar
  59. Tucker BA, Park IH, Qi SD et al (2011) Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS One 6:e18992. doi: 10.1371/journal.pone.0018992 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Wan J, Zheng H, Xiao H-L et al (2007) Sonic hedgehog promotes stem-cell potential of Müller glia in the mammalian retina. Biochem Biophys Res Commun 363:347–354. doi: 10.1016/j.bbrc.2007.08.178 PubMedCrossRefGoogle Scholar
  61. West EL, Pearson RA, Barker SE et al (2010) Long-term survival of photoreceptors transplanted into the adult murine neural retina requires immune modulation. Stem Cells 28:1997–2007. doi: 10.1002/stem.520 PubMedCentralPubMedCrossRefGoogle Scholar
  62. West EL, Gonzalez-Cordero A, Hippert C et al (2012) Defining the integration capacity of embryonic stem cell-derived photoreceptor precursors. Stem Cells 30:1424–1435. doi: 10.1002/stem.1123 PubMedCentralPubMedCrossRefGoogle Scholar
  63. Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10:678–684. doi: 10.1016/j.stem.2012.05.005 PubMedCrossRefGoogle Scholar
  64. Yu J, Vodyanik MA, Smuga-Otto K, et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. Epub 2007 Nov 20Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
  2. 2.Centre for Integrative Biology (CIBIO)MattarelloItaly

Personalised recommendations