Skip to main content

Photoreceptor Degeneration: Molecular Mechanisms of Photoreceptor Degeneration

  • Chapter
  • First Online:
Vertebrate Photoreceptors
  • 1346 Accesses

Abstract

Rod and cone photoreceptors initiate the visual process by capturing photons and transducing the information into chemical and electrical signals. These functionally specialized neurons have high metabolic activity and oxygen consumption, making them vulnerable to genetic insults and changes in microenvironment. Inherited retinal degenerative diseases are clinically and genetically heterogeneous, with more than 200 genes identified so far. In a majority of retinal degenerations, the genetic defects affect diverse functions in photoreceptors, such as phototransduction, gene regulation, splicing, or intracellular transport. To develop efficient therapies, it is critical to elucidate how genetic defects affect cellular functions and activate death pathways. Caspase-dependent and -independent apoptosis appear to be the major route for photoreceptor cell death in retinal diseases, although the importance of necrosis and autophagy has been demonstrated. Distinct molecules associated with oxidative or endoplasmic reticulum stress can activate these interconnected cell death pathways. Notably, in most inherited diseases, the first signs of photoreceptor dysfunction or loss are observed years after birth and late in life, indicating adaptive mechanisms that protect the cells and suggesting their breakdown may lead to cell death. Mitochondria are predicted to play a critical role in integrating cellular homeostasis to stress and initiation of death pathways. Investigations of adaptive behavior and pre-death molecules that modulate the response to genetic factors should provide attractive targets for the development of better therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32(1):19–29. doi:10.1016/j.tins.2008.10.001

    PubMed  CAS  Google Scholar 

  • Abe T, Tsuda T, Yoshida M, Wada Y, Kano T, Itoyama Y, Tamai M (2000) Macular degeneration associated with aberrant expansion of trinucleotide repeat of the SCA7 gene in 2 Japanese families. Arch Ophthalmol 118(10):1415–1421

    PubMed  CAS  Google Scholar 

  • Ali RR, Reichel MB, Kanuga N, Munro PM, Alexander RA, Clarke AR, Luthert PJ, Bhattacharya SS, Hunt DM (1998) Absence of p53 delays apoptotic photoreceptor cell death in the rds mouse. Curr Eye Res 17(9):917–923

    PubMed  CAS  Google Scholar 

  • Allikmets R (1997) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Gen 17(1):122. doi:10.1038/ng0997-122a

    CAS  Google Scholar 

  • Ambati J, Fowler BJ (2012) Mechanisms of age-related macular degeneration. Neuron 75(1):26–39. doi:10.1016/j.neuron.2012.06.018

    PubMed Central  PubMed  CAS  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10(Suppl):S18–S25. doi:10.1038/nrn1434

    PubMed  Google Scholar 

  • Anderson KM, Seed T, Ou D, Harris JE (1999) Free radicals and reactive oxygen species in programmed cell death. Med Hypotheses 52(5):451–463. doi:10.1054/mehy.1997.0521

    PubMed  CAS  Google Scholar 

  • Applebury ML, Antoch MP, Baxter LC, Chun LL, Falk JD, Farhangfar F, Kage K, Krzystolik MG, Lyass LA, Robbins JT (2000) The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 27(3):513–523

    PubMed  CAS  Google Scholar 

  • Balmer D, Emery M, Andreux P, Auwerx J, Ginet V, Puyal J, Schorderet DF, Roduit R (2013) Autophagy defect is associated with low glucose-induced apoptosis in 661W photoreceptor Cells. PloS One 8(9):e74162. doi:10.1371/journal.pone.0074162

    PubMed Central  PubMed  CAS  Google Scholar 

  • Barth E, Radermacher P, Szabo C (2006) The world according to poly(ADP-ribose) polymerase (PARP)–update 2006. Intensive Care Med 32(10):1470–1474. doi:10.1007/s00134-006-0336-x

    PubMed  CAS  Google Scholar 

  • Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292(5521):1552–1555. doi:10.1126/science.292.5521.1552

    PubMed  CAS  Google Scholar 

  • Bergmann M, Schutt F, Holz FG, Kopitz J (2004) Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of age-related macular degeneration. FASEB J 18(3):562–564. doi:10.1096/fj.03-0289fje

    PubMed  CAS  Google Scholar 

  • Bok D, Yasumura D, Matthes MT, Ruiz A, Duncan JL, Chappelow AV, Zolutukhin S, Hauswirth W, LaVail MM (2002) Effects of adeno-associated virus-vectored ciliary neurotrophic factor on retinal structure and function in mice with a P216L rds/peripherin mutation. Exp Eye Res 74(6):719–735

    PubMed  CAS  Google Scholar 

  • Borner C, Monney L (1999) Apoptosis without caspases: an inefficient molecular guillotine? Cell Death Differ 6(6):497–507. doi:10.1038/sj.cdd.4400525

    PubMed  CAS  Google Scholar 

  • Bouchier-Hayes L, Lartigue L, Newmeyer DD (2005) Mitochondria: pharmacological manipulation of cell death. J Clin Invest 115(10):2640–2647. doi:10.1172/JCI26274

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bowes C, Li T, Danciger M, Baxter LC, Applebury ML, Farber DB (1990) Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature (Lond) 347(6294):677–680. doi:10.1038/347677a0

    CAS  Google Scholar 

  • Bowne SJ, Sullivan LS, Blanton SH, Cepko CL, Blackshaw S, Birch DG, Hughbanks-Wheaton D, Heckenlively JR, Daiger SP (2002) Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) cause the RP10 form of autosomal dominant retinitis pigmentosa. Hum Mol Genet 11(5):559–568

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bramall AN, Wright AF, Jacobson SG, McInnes RR (2010) The genomic, biochemical, and cellular responses of the retina in inherited photoreceptor degenerations and prospects for the treatment of these disorders. Annu Rev Neurosci 33:441–472. doi:10.1146/annurev-neuro-060909-153227

    PubMed  CAS  Google Scholar 

  • Brenner D, Mak TW (2009) Mitochondrial cell death effectors. Curr Opin Cell Biol 21(6):871–877. doi:10.1016/j.ceb.2009.09.004

    PubMed  CAS  Google Scholar 

  • Burns J, Clarke G, Lumsden CJ (2002) Photoreceptor death: spatiotemporal patterns arising from one-hit death kinetics and a diffusible cell death factor. Bull Math Biol 64(6):1117–1145. doi:10.1006/bulm.2002.0320

    PubMed  CAS  Google Scholar 

  • Cande C, Cecconi F, Dessen P, Kroemer G (2002) Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci 115(pt 24):4727–4734

    PubMed  CAS  Google Scholar 

  • Cao G, Xing J, Xiao X, Liou AK, Gao Y, Yin XM, Clark RS, Graham SH, Chen J (2007) Critical role of calpain I in mitochondrial release of apoptosis-inducing factor in ischemic neuronal injury. J Neurosci 27(35):9278–9293. doi:10.1523/JNEUROSCI.2826-07.2007

    PubMed  CAS  Google Scholar 

  • Cao X, Phillis JW (1995) The free radical scavenger, alpha-lipoic acid, protects against cerebral ischemia-reperfusion injury in gerbils. Free Radic Res 23(4):365–370

    PubMed  CAS  Google Scholar 

  • Carmody RJ, Cotter TG (2000) Oxidative stress induces caspase-independent retinal apoptosis in vitro. Cell Death Differ 7(3):282–291. doi:10.1038/sj.cdd.4400646

    PubMed  CAS  Google Scholar 

  • Carter-Dawson LD, LaVail MM (1979) Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. J Comp Neurol 188(2):245–262. doi:10.1002/cne.901880204

    PubMed  CAS  Google Scholar 

  • Chahory S, Keller N, Martin E, Omri B, Crisanti P, Torriglia A (2010) Light induced retinal degeneration activates a caspase-independent pathway involving cathepsin D. Neurochem Int 57(3):278–287. doi:10.1016/j.neuint.2010.06.006

    PubMed  CAS  Google Scholar 

  • Chamberlain M, Baird P, Dirani M, Guymer R (2006) Unraveling a complex genetic disease: age-related macular degeneration. Surv Ophthalmol 51(6):576–586. doi:10.1016/j.survophthal.2006.08.003

    PubMed  Google Scholar 

  • Chang CJ, Lai WW, Edward DP, Tso MO (1995) Apoptotic photoreceptor cell death after traumatic retinal detachment in humans. Arch Ophthalmol 113(7):880–886

    PubMed  CAS  Google Scholar 

  • Chen B, Cepko CL (2009) HDAC4 regulates neuronal survival in normal and diseased retinas. Science 323(5911):256–259. doi:10.1126/science.1166226

    PubMed Central  PubMed  CAS  Google Scholar 

  • Christofferson DE, Yuan J (2010) Cyclophilin A release as a biomarker of necrotic cell death. Cell Death Differ 17(12):1942–1943. doi:10.1038/cdd.2010.123

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ, Pang JJ, Sumaroka A, Windsor EA, Wilson JM, Flotte TR, Fishman GA, Heon E, Stone EM, Byrne BJ, Jacobson SG, Hauswirth WW (2008) Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA 105(39): 15112–15117. doi:10.1073/pnas.0807027105

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cideciyan AV, Jacobson SG, Beltran WA, Hauswirth WW, Aguirre GD (2013) Reply to Townes-Anderson: RPE65 gene therapy does not alter the natural history of retinal degeneration. Proc Natl Acad Sci USA 110(19):E1706

    PubMed Central  PubMed  CAS  Google Scholar 

  • Clarke G, Lumsden CJ, McInnes RR (2001) Inherited neurodegenerative diseases: the one-hit model of neurodegeneration. Hum Mol Gen 10(20):2269–2275

    PubMed  CAS  Google Scholar 

  • Comitato A, Spampanato C, Chakarova C, Sanges D, Bhattacharya SS, Marigo V (2007) Mutations in splicing factor PRPF3, causing retinal degeneration, form detrimental aggregates in photoreceptor cells. Hum Mol Genet 16(14):1699–1707. doi:10.1093/hmg/ddm118

    PubMed  CAS  Google Scholar 

  • Cook B, Lewis GP, Fisher SK, Adler R (1995) Apoptotic photoreceptor degeneration in experimental retinal detachment. Invest Ophthalmol Vis Sci 36(6):990–996

    PubMed  CAS  Google Scholar 

  • Coppieters F, Casteels I, Meire F, De Jaegere S, Hooghe S, van Regemorter N, Van Esch H, Matuleviciene A, Nunes L, Meersschaut V, Walraedt S, Standaert L, Coucke P, Hoeben H, Kroes HY, Vande Walle J, de Ravel T, Leroy BP, De Baere E (2010) Genetic screening of LCA in Belgium: predominance of CEP290 and identification of potential modifier alleles in AHI1 of CEP290-related phenotypes. Hum Mut 31(10):E1709–E1766. doi:10.1002/humu.21336

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cornish EE, Madigan MC, Natoli R, Hales A, Hendrickson AE, Provis JM (2005) Gradients of cone differentiation and FGF expression during development of the foveal depression in macaque retina. Vis Neurosci 22(4):447–459. doi:10.1017/S0952523805224069

    PubMed  Google Scholar 

  • Costa BL, Fawcett R, Li GY, Safa R, Osborne NN (2008) Orally administered epigallocatechin gallate attenuates light-induced photoreceptor damage. Brain Res Bull 76(4):412–423. doi:10.1016/j.brainresbull.2008.01.022

    PubMed  Google Scholar 

  • Cronin T, Raffelsberger W, Lee-Rivera I, Jaillard C, Niepon ML, Kinzel B, Clerin E, Petrosian A, Picaud S, Poch O, Sahel JA, Leveillard T (2010) The disruption of the rod-derived cone viability gene leads to photoreceptor dysfunction and susceptibility to oxidative stress. Cell Death Differ 17(7):1199–1210. doi:10.1038/cdd.2010.2

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cuervo AM (2010) Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol Metab 21(3):142–150. doi:10.1016/j.tem.2009.10.003

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cuervo AM, Dice JF (2000) Regulation of lamp2a levels in the lysosomal membrane. Traffic 1(7):570–583

    PubMed  CAS  Google Scholar 

  • Davis MD, Gangnon RE, Lee LY, Hubbard LD, Klein BE, Klein R, Ferris FL, Bressler SB, Milton RC, Age-Related Eye Disease Study Group (2005) The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS Report No. 17. Arch Ophthalmol 123(11):1484–1498. doi:10.1001/archopht.123.11.1484

    PubMed  Google Scholar 

  • den Hollander AI, Roepman R, Koenekoop RK, Cremers FP (2008) Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res 27(4):391–419. doi:10.1016/j.preteyeres.2008.05.003

    Google Scholar 

  • Donovan M, Carmody RJ, Cotter TG (2001) Light-induced photoreceptor apoptosis in vivo requires neuronal nitric-oxide synthase and guanylate cyclase activity and is caspase-3-independent. J Biol Chem 276(25):23000–23008. doi:10.1074/jbc.M005359200

    PubMed  CAS  Google Scholar 

  • Donovan M, Cotter TG (2002) Caspase-independent photoreceptor apoptosis in vivo and differential expression of apoptotic protease activating factor-1 and caspase-3 during retinal development. Cell Death Differ 9(11):1220–1231. doi:10.1038/sj.cdd.4401105

    PubMed  CAS  Google Scholar 

  • Doonan F, Donovan M, Cotter TG (2003) Caspase-independent photoreceptor apoptosis in mouse models of retinal degeneration. J Neurosci 23(13):5723–5731

    PubMed  CAS  Google Scholar 

  • Doonan F, Donovan M, Cotter TG (2005) Activation of multiple pathways during photoreceptor apoptosis in the rd mouse. Invest Ophthalmol Vis Sci 46(10):3530–3538. doi:10.1167/iovs.05-0248

    PubMed  Google Scholar 

  • Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ (2006) Activation of IKK by TNF-alpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22(2):245–257. doi:10.1016/j.molcel.2006.03.026

    PubMed  CAS  Google Scholar 

  • Fahim AT, Bowne SJ, Sullivan LS, Webb KD, Williams JT, Wheaton DK, Birch DG, Daiger SP (2011) Allelic heterogeneity and genetic modifier loci contribute to clinical variation in males with X-linked retinitis pigmentosa due to RPGR mutations. PloS One 6(8):e23021. doi:10.1371/journal.pone.0023021

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fain GL, Hardie R, Laughlin SB (2010) Phototransduction and the evolution of photoreceptors. Curr Biol 20(3):R114–R124. doi:10.1016/j.cub.2009.12.006

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fang P, Schachner M, Shen YQ (2012) HMGB1 in development and diseases of the central nervous system. Mol Neurobiol 45(3):499–506. doi:10.1007/s12035-012-8264-y

    PubMed  CAS  Google Scholar 

  • Finkbeiner S (2000) CREB couples neurotrophin signals to survival messages. Neuron 25(1):11–14

    PubMed  CAS  Google Scholar 

  • Fletcher EL (2010) Mechanisms of photoreceptor death during retinal degeneration. Optom Vis Sci 87(4):269–275. doi:10.1097/OPX.0b013e3181c9132b

    PubMed  Google Scholar 

  • Fox DA, Poblenz AT, He L (1999) Calcium overload triggers rod photoreceptor apoptotic cell death in chemical-induced and inherited retinal degenerations. Ann NY Acad Sci 893:282–285

    PubMed  CAS  Google Scholar 

  • Fox DA, Poblenz AT, He L, Harris JB, Medrano CJ (2003) Pharmacological strategies to block rod photoreceptor apoptosis caused by calcium overload: a mechanistic target-site approach to neuroprotection. Eur J Ophthalmol 13(suppl 3):S44–S56

    PubMed  Google Scholar 

  • Franke H, Illes P (2006) Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol Ther 109(3):297–324. doi:10.1016/j.pharmthera.2005.06.002

    PubMed  CAS  Google Scholar 

  • Freund CL, Wang QL, Chen S, Muskat BL, Wiles CD, Sheffield VC, Jacobson SG, McInnes RR, Zack DJ, Stone EM (1998) De novo mutations in the CRX homeobox gene associated with Leber congenital amaurosis. Nat Gen 18(4):311–312. doi:10.1038/ng0498-311

    CAS  Google Scholar 

  • Friedman DS, O’Colmain BJ, Munoz B, Tomany SC, McCarty C, de Jong PT, Nemesure B, Mitchell P, Kempen J, Eye Diseases Prevalence Research Group (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122(4):564–572. doi:10.1001/archopht.122.4.564

    Google Scholar 

  • Friedman JS, Ray JW, Waseem N, Johnson K, Brooks MJ, Hugosson T, Breuer D, Branham KE, Krauth DS, Bowne SJ, Sullivan LS, Ponjavic V, Granse L, Khanna R, Trager EH, Gieser LM, Hughbanks-Wheaton D, Cojocaru RI, Ghiasvand NM, Chakarova CF, Abrahamson M, Goring HH, Webster AR, Birch DG, Abecasis GR, Fann Y, Bhattacharya SS, Daiger SP, Heckenlively JR, Andreasson S, Swaroop A (2009) Mutations in a BTB-Kelch protein, KLHL7, cause autosomal-dominant retinitis pigmentosa. Am J Hum Genet 84(6):792–800. doi:10.1016/j.ajhg.2009.05.007

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fritsche LG, Chen W, Schu M, Yaspan BL, Yu Y, Thorleifsson G, Zack DJ, Arakawa S, Cipriani V, Ripke S, Igo RP, Jr., Buitendijk GH, Sim X, Weeks DE, Guymer RH, Merriam JE, Francis PJ, Hannum G, Agarwal A, Armbrecht AM, Audo I, Aung T, Barile GR, Benchaboune M, Bird AC, Bishop PN, Branham KE, Brooks M, Brucker AJ, Cade WH, Cain MS, Campochiaro PA, Chan CC, Cheng CY, Chew EY, Chin KA, Chowers I, Clayton DG, Cojocaru R, Conley YP, Cornes BK, Daly MJ, Dhillon B, Edwards AO, Evangelou E, Fagerness J, Ferreyra HA, Friedman JS, Geirsdottir A, George RJ, Gieger C, Gupta N, Hagstrom SA, Harding SP, Haritoglou C, Heckenlively JR, Holz FG, Hughes G, Ioannidis JP, Ishibashi T, Joseph P, Jun G, Kamatani Y, Katsanis N, C NK, Khan JC, Kim IK, Kiyohara Y, Klein BE, Klein R, Kovach JL, Kozak I, Lee CJ, Lee KE, Lichtner P, Lotery AJ, Meitinger T, Mitchell P, Mohand-Said S, Moore AT, Morgan DJ, Morrison MA, Myers CE, Naj AC, Nakamura Y, Okada Y, Orlin A, Ortube MC, Othman MI, Pappas C, Park KH, Pauer GJ, Peachey NS, Poch O, Priya RR, Reynolds R, Richardson AJ, Ripp R, Rudolph G, Ryu E, Sahel JA, Schaumberg DA, Scholl HP, Schwartz SG, Scott WK, Shahid H, Sigurdsson H, Silvestri G, Sivakumaran TA, Smith RT, Sobrin L, Souied EH, Stambolian DE, Stefansson H, Sturgill-Short GM, Takahashi A, Tosakulwong N, Truitt BJ, Tsironi EE, Uitterlinden AG, van Duijn CM, Vijaya L, Vingerling JR, Vithana EN, Webster AR, Wichmann HE, Winkler TW, Wong TY, Wright AF, Zelenika D, Zhang M, Zhao L, Zhang K, Klein ML, Hageman GS, Lathrop GM, Stefansson K, Allikmets R, Baird PN, Gorin MB, Wang JJ, Klaver CC, Seddon JM, Pericak-Vance MA, Iyengar SK, Yates JR, Swaroop A, Weber BH, Kubo M, Deangelis MM, Leveillard T, Thorsteinsdottir U, Haines JL, Farrer LA, Heid IM, Abecasis GR, Consortium AMDG (2013) Seven new loci associated with age-related macular degeneration. Nat Genet 45(4):433–439, 439e, 431–432. doi:10.1038/ng.2578

    Google Scholar 

  • Galganska H, Karachitos A, Wojtkowska M, Stobienia O, Budzinska M, Kmita H (2010) Communication between mitochondria and nucleus: putative role for VDAC in reduction/oxidation mechanism. Biochim Biophys Acta 1797(6-7):1276–1280. doi:10.1016/j.bbabio.2010.02.004

    PubMed  CAS  Google Scholar 

  • Gardner JC, Webb TR, Kanuga N, Robson AG, Holder GE, Stockman A, Ripamonti C, Ebenezer ND, Ogun O, Devery S, Wright GA, Maher ER, Cheetham ME, Moore AT, Michaelides M, Hardcastle AJ (2010) X-linked cone dystrophy caused by mutation of the red and green cone opsins. Am J Hum Genet 87(1):26–39. doi:10.1016/j.ajhg.2010.05.019

    PubMed Central  PubMed  CAS  Google Scholar 

  • Goetz KE, Reeves MJ, Tumminia SJ, Brooks BP (2012) eyeGENE(R): a novel approach to combine clinical testing and researching genetic ocular disease. Curr Opin Ophthalmol 23(5):355–363. doi:10.1097/ICU.0b013e32835715c9

    PubMed Central  PubMed  Google Scholar 

  • Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R (1995) In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 21(5):1465–1468

    PubMed  CAS  Google Scholar 

  • Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305(5684):626–629. doi:10.1126/science.1099320

    PubMed  CAS  Google Scholar 

  • Gregory CY, Bird AC (1995) Cell loss in retinal dystrophies by apoptosis–death by informed consent! Br J Ophthalmol 79(2):186–190

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gu SM, Thompson DA, Srikumari CR, Lorenz B, Finckh U, Nicoletti A, Murthy KR, Rathmann M, Kumaramanickavel G, Denton MJ, Gal A (1997) Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat Genet 17(2):194–197. doi:10.1038/ng1097-194

    PubMed  CAS  Google Scholar 

  • Hafezi F, Steinbach JP, Marti A, Munz K, Wang ZQ, Wagner EF, Aguzzi A, Reme CE (1997) The absence of c-fos prevents light-induced apoptotic cell death of photoreceptors in retinal degeneration in vivo. Nat Med 3(3):346–349

    PubMed  CAS  Google Scholar 

  • Hamel CP (2007) Cone rod dystrophies. Orphanet J Rare Dis 2:7. doi:10.1186/1750-1172-2-7

    PubMed Central  PubMed  Google Scholar 

  • Hauck SM, Ekstrom PA, Ahuja-Jensen P, Suppmann S, Paquet-Durand F, van Veen T, Ueffing M (2006) Differential modification of phosducin protein in degenerating rd1 retina is associated with constitutively active Ca2+/calmodulin kinase II in rod outer segments. Mol Cell Proteomics 5(2):324–336. doi:10.1074/mcp.M500217-MCP200

    PubMed  CAS  Google Scholar 

  • Helmlinger D, Yvert G, Picaud S, Merienne K, Sahel J, Mandel JL, Devys D (2002) Progressive retinal degeneration and dysfunction in R6 Huntington’s disease mice. Hum Mol Gen 11(26):3351–3359

    PubMed  CAS  Google Scholar 

  • Hisatomi T, Nakazawa T, Noda K, Almulki L, Miyahara S, Nakao S, Ito Y, She H, Kohno R, Michaud N, Ishibashi T, Hafezi-Moghadam A, Badley AD, Kroemer G, Miller JW (2008) HIV protease inhibitors provide neuroprotection through inhibition of mitochondrial apoptosis in mice. J Clin Invest 118(6):2025–2038. doi:10.1172/JCI34267

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hisatomi T, Sakamoto T, Murata T, Yamanaka I, Oshima Y, Hata Y, Ishibashi T, Inomata H, Susin SA, Kroemer G (2001) Relocalization of apoptosis-inducing factor in photoreceptor apoptosis induced by retinal detachment in vivo. Am J Pathol 158(4):1271–1278. doi:10.1016/S0002-9440(10)64078-3

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hoang QV, Linsenmeier RA, Chung CK, Curcio CA (2002) Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation. Vis Neurosci 19(4):395–407

    PubMed  CAS  Google Scholar 

  • Huang L, Xiao X, Li S, Jia X, Wang P, Guo X, Zhang Q (2012) CRX variants in cone-rod dystrophy and mutation overview. Biochem Biophys Res Commun 426(4):498–503. doi:10.1016/j.bbrc.2012.08.110

    PubMed  CAS  Google Scholar 

  • Huang PC, Gaitan AE, Hao Y, Petters RM, Wong F (1993) Cellular interactions implicated in the mechanism of photoreceptor degeneration in transgenic mice expressing a mutant rhodopsin gene. Proc Natl Acad Sci USA 90(18):8484–8488

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hubbell WL, Bownds MD (1979) Visual transduction in vertebrate photoreceptors. Annu Rev Neurosci 2:17–34. doi:10.1146/annurev.ne.02.030179.000313

    PubMed  CAS  Google Scholar 

  • Illing ME, Rajan RS, Bence NF, Kopito RR (2002) A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. J Biol Chem 277(37):34150–34160. doi:10.1074/jbc.M204955200

    PubMed  CAS  Google Scholar 

  • Jackson GR, Owsley C, Curcio CA (2002) Photoreceptor degeneration and dysfunction in aging and age-related maculopathy. Ageing Res Rev 1(3):381–396

    PubMed  Google Scholar 

  • Jacobson SG, Cideciyan AV, Iannaccone A, Weleber RG, Fishman GA, Maguire AM, Affatigato LM, Bennett J, Pierce EA, Danciger M, Farber DB, Stone EM (2000) Disease expression of RP1 mutations causing autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 41(7):1898–1908

    PubMed  CAS  Google Scholar 

  • Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB, Roman AJ, Peden MC, Aleman TS, Boye SL, Sumaroka A, Conlon TJ, Calcedo R, Pang JJ, Erger KE, Olivares MB, Mullins CL, Swider M, Kaushal S, Feuer WJ, Iannaccone A, Fishman GA, Stone EM, Byrne BJ, Hauswirth WW (2012) Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 130(1):9–24. doi:10.1001/archophthalmol.2011.298

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jagtap P, Szabo C (2005) Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 4(5):421–440. doi:10.1038/nrd1718

    PubMed  CAS  Google Scholar 

  • Joly S, Francke M, Ulbricht E, Beck S, Seeliger M, Hirrlinger P, Hirrlinger J, Lang KS, Zinkernagel M, Odermatt B, Samardzija M, Reichenbach A, Grimm C, Reme CE (2009) Cooperative phagocytes: resident microglia and bone marrow immigrants remove dead photoreceptors in retinal lesions. Am J Pathol 174(6):2310–2323. doi:10.2353/ajpath.2009.090023

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jomary C, Neal MJ, Jones SE (2001) Characterization of cell death pathways in murine retinal neurodegeneration implicates cytochrome c release, caspase activation, and bid cleavage. Mol Cell Neurosci 18(4):335–346. doi:10.1006/mcne.2001.1036

    PubMed  CAS  Google Scholar 

  • Justilien V, Pang JJ, Renganathan K, Zhan X, Crabb JW, Kim SR, Sparrow JR, Hauswirth WW, Lewin AS (2007) SOD2 knockdown mouse model of early AMD. Invest Ophthalmol Vis Sci 48(10):4407–4420. doi:10.1167/iovs.07-0432

    PubMed  Google Scholar 

  • Kaarniranta K, Hyttinen J, Ryhanen T, Viiri J, Paimela T, Toropainen E, Sorri I, Salminen A (2010) Mechanisms of protein aggregation in the retinal pigment epithelial cells. Front Biosci (Elite Ed) 2:1374–1384

    Google Scholar 

  • Kaarniranta K, Sinha D, Blasiak J, Kauppinen A, Vereb Z, Salminen A, Boulton ME, Petrovski G (2013) Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration. Autophagy 9(7):973–984

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kagan VE, Shvedova AA, Novikov KN, Kozlov YP (1973) Light-induced free radical oxidation of membrane lipids in photoreceptors of frog retina. Biochim Biophys Acta 330(1):76–79

    PubMed  CAS  Google Scholar 

  • Kaur J, Mencl S, Sahaboglu A, Farinelli P, van Veen T, Zrenner E, Ekstrom P, Paquet-Durand F, Arango-Gonzalez B (2011) Calpain and PARP activation during photoreceptor cell death in P23H and S334ter rhodopsin mutant rats. PloS One 6(7):e22181. doi:10.1371/journal.pone.0022181

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kaushik S, Massey AC, Mizushima N, Cuervo AM (2008) Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol Biol Cell 19(5):2179–2192. doi:10.1091/mbc.E07-11-1155

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kedzierski W, Bok D, Travis GH (1998) Non-cell-autonomous photoreceptor degeneration in rds mutant mice mosaic for expression of a rescue transgene. J Neurosci 18(11):4076–4082

    PubMed  CAS  Google Scholar 

  • Khandhadia S, Lotery A (2010) Oxidation and age-related macular degeneration: insights from molecular biology. Expert Rev Mol Med 12:e34. doi:10.1017/S146239941000164X

    PubMed  Google Scholar 

  • Khanna H, Davis EE, Murga-Zamalloa CA, Estrada-Cuzcano A, Lopez I, den Hollander AI, Zonneveld MN, Othman MI, Waseem N, Chakarova CF, Maubaret C, Diaz-Font A, MacDonald I, Muzny DM, Wheeler DA, Morgan M, Lewis LR, Logan CV, Tan PL, Beer MA, Inglehearn CF, Lewis RA, Jacobson SG, Bergmann C, Beales PL, Attie-Bitach T, Johnson CA, Otto EA, Bhattacharya SS, Hildebrandt F, Gibbs RA, Koenekoop RK, Swaroop A, Katsanis N (2009) A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies. Nat Genet 41(6):739–745. doi:10.1038/ng.366

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kim JY, Zhao H, Martinez J, Doggett TA, Kolesnikov AV, Tang PH, Ablonczy Z, Chan CC, Zhou Z, Green DR, Ferguson TA (2013) Noncanonical autophagy promotes the visual cycle. Cell 154(2):365–376. doi:10.1016/j.cell.2013.06.012

    PubMed  CAS  Google Scholar 

  • Klein JA, Ackerman SL (2003) Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest 111(6):785–793. doi:10.1172/JCI18182

    PubMed Central  PubMed  CAS  Google Scholar 

  • Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, Bronson RT, Ackerman SL (2002) The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature (Lond) 419(6905):367–374. doi:10.1038/nature01034

    CAS  Google Scholar 

  • Koenekoop RK (2004) An overview of Leber congenital amaurosis: a model to understand human retinal development. Surv Ophthalmol 49(4):379–398. doi:10.1016/j.survophthal.2004.04.003

    PubMed  Google Scholar 

  • Kolesnikov AV, Fan J, Crouch RK, Kefalov VJ (2010) Age-related deterioration of rod vision in mice. J Neurosci 30(33):11222–11231. doi:10.1523/JNEUROSCI.4239-09.2010

    PubMed Central  PubMed  CAS  Google Scholar 

  • Komeima K, Rogers BS, Lu L, Campochiaro PA (2006) Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci USA 103(30):11300–11305. doi:10.1073/pnas.0604056103

    PubMed Central  PubMed  CAS  Google Scholar 

  • Komeima K, Usui S, Shen J, Rogers BS, Campochiaro PA (2008) Blockade of neuronal nitric oxide synthase reduces cone cell death in a model of retinitis pigmentosa. Free Radic Biol Med 45(6):905–912. doi:10.1016/j.freeradbiomed.2008.06.020

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kong L, Zhou X, Li F, Yodoi J, McGinnis J, Cao W (2010) Neuroprotective effect of overexpression of thioredoxin on photoreceptor degeneration in Tubby mice. Neurobiol Dis 38(3):446–455. doi:10.1016/j.nbd.2010.03.005

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kowluru RA, Odenbach S (2004) Role of interleukin-1beta in the development of retinopathy in rats: effect of antioxidants. Invest Ophthalmol Vis Sci 45(11):4161–4166. doi:10.1167/iovs.04-0633

    PubMed  Google Scholar 

  • Kraft C, Peter M, Hofmann K (2010) Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol 12(9):836–841. doi:10.1038/ncb0910-836

    PubMed  CAS  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G, Nomenclature Committee on Cell Death (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16(1):3–11. doi:10.1038/cdd.2008.150

    PubMed Central  PubMed  CAS  Google Scholar 

  • Krohne TU, Stratmann NK, Kopitz J, Holz FG (2010) Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp Eye Res 90(3):465–471. doi:10.1016/j.exer.2009.12.011

    PubMed  CAS  Google Scholar 

  • Kunchithapautham K, Rohrer B (2007a) Apoptosis and autophagy in photoreceptors exposed to oxidative stress. Autophagy 3(5):433–441

    PubMed  CAS  Google Scholar 

  • Kunchithapautham K, Rohrer B (2007b) Autophagy is one of the multiple mechanisms active in photoreceptor degeneration. Autophagy 3(1):65–66

    PubMed  CAS  Google Scholar 

  • Langmann T (2007) Microglia activation in retinal degeneration. J Leukoc Biol 81(6):1345–1351. doi:10.1189/jlb.0207114

    PubMed  CAS  Google Scholar 

  • LaVail MM (1981) Analysis of neurological mutants with inherited retinal degeneration. Friedenwald Lecture. Invest Ophthalmol Vis Sci 21(5):638–657

    PubMed  CAS  Google Scholar 

  • Lemarie A, Lagadic-Gossmann D, Morzadec C, Allain N, Fardel O, Vernhet L (2004) Cadmium induces caspase-independent apoptosis in liver Hep3B cells: role for calcium in signaling oxidative stress-related impairment of mitochondria and relocation of endonuclease G and apoptosis-inducing factor. Free Radic Biol Med 36(12):1517–1531. doi:10.1016/j.freeradbiomed.2004.03.020

    PubMed  CAS  Google Scholar 

  • Leveillard T, Mohand-Said S, Lorentz O, Hicks D, Fintz AC, Clerin E, Simonutti M, Forster V, Cavusoglu N, Chalmel F, Dolle P, Poch O, Lambrou G, Sahel JA (2004) Identification and characterization of rod-derived cone viability factor. Nat Genet 36(7):755–759. doi:10.1038/ng1386

    PubMed  CAS  Google Scholar 

  • Lezi E, Swerdlow RH (2012) Mitochondria in neurodegeneration. Adv Exp Med Biol 942:269–286. doi:10.1007/978-94-007-2869-1_12

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liang FQ, Godley BF (2003) Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 76(4):397–403

    PubMed  CAS  Google Scholar 

  • Lim JH, Wickremasinghe SS, Xie J, Chauhan DS, Baird PN, Robman LD, Hageman G, Guymer RH (2012) Delay to treatment and visual outcomes in patients treated with anti-vascular endothelial growth factor for age-related macular degeneration. Am J Ophthalmol 153(4):678–686. doi:10.1016/j.ajo.2011.09.013

    Google Scholar 

  • Lim LS, Wong TY (2012) Lipids and diabetic retinopathy. Expert Opin Biol Ther 12(1):93–105. doi:10.1517/14712598.2012.641531

    PubMed  Google Scholar 

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86(1):147–157

    PubMed  CAS  Google Scholar 

  • Lo AC, Woo TT, Wong RL, Wong D (2011) Apoptosis and other cell death mechanisms after retinal detachment: implications for photoreceptor rescue. Ophthalmologica 226(suppl 1):10–17. doi:10.1159/000328206

    PubMed  Google Scholar 

  • Lobanova ES, Finkelstein S, Skiba NP, Arshavsky VY (2013) Proteasome overload is a common stress factor in multiple forms of inherited retinal degeneration. Proc Natl Acad Sci USA 110(24):9986–9991. doi:10.1073/pnas.1305521110

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lohr HR, Kuntchithapautham K, Sharma AK, Rohrer B (2006) Multiple, parallel cellular suicide mechanisms participate in photoreceptor cell death. Exp Eye Res 83(2):380–389. doi:10.1016/j.exer.2006.01.014

    PubMed  CAS  Google Scholar 

  • Long KO, Fisher SK, Fariss RN, Anderson DH (1986) Disc shedding and autophagy in the cone-dominant ground squirrel retina. Exp Eye Res 43(2):193–205

    PubMed  CAS  Google Scholar 

  • Luce K, Weil AC, Osiewacz HD (2010) Mitochondrial protein quality control systems in aging and disease. Adv Exp Med Biol 694:108–125

    PubMed  CAS  Google Scholar 

  • MacDonald IM, Sauve Y, Sieving PA (2007) Preventing blindness in retinal disease: ciliary neurotrophic factor intraocular implants. Can J Ophthalmol 42(3):399–402. doi:10.3129/can j ophthalmol.i07-039

    PubMed  Google Scholar 

  • Mahajan VB, Skeie JM, Bassuk AG, Fingert JH, Braun TA, Daggett HT, Folk JC, Sheffield VC, Stone EM (2012) Calpain-5 mutations cause autoimmune uveitis, retinal neovascularization, and photoreceptor degeneration. PLoS Genet 8(10):e1003001. doi:10.1371/journal.pgen.1003001

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mantamadiotis T, Lemberger T, Bleckmann SC, Kern H, Kretz O, Martin Villalba A, Tronche F, Kellendonk C, Gau D, Kapfhammer J, Otto C, Schmid W, Schutz G (2002) Disruption of CREB function in brain leads to neurodegeneration. Nat Genet 31(1):47–54. doi:10.1038/ng882

    PubMed  CAS  Google Scholar 

  • Marino G, Madeo F, Kroemer G (2011) Autophagy for tissue homeostasis and neuroprotection. Curr Opin Cell Biol 23(2):198–206. doi:10.1016/j.ceb.2010.10.001

    PubMed  CAS  Google Scholar 

  • Marlhens F, Bareil C, Griffoin JM, Zrenner E, Amalric P, Eliaou C, Liu SY, Harris E, Redmond TM, Arnaud B, Claustres M, Hamel CP (1997) Mutations in RPE65 cause Leber’s congenital amaurosis. Nat Genet 17(2):139–141. doi:10.1038/ng1097-139

    PubMed  CAS  Google Scholar 

  • Massey A, Kiffin R, Cuervo AM (2004) Pathophysiology of chaperone-mediated autophagy. Int J Biochem Cell Biol 36(12):2420–2434. doi:10.1016/j.biocel.2004.04.010

    PubMed  CAS  Google Scholar 

  • Massey AC, Follenzi A, Kiffin R, Zhang C, Cuervo AM (2008) Early cellular changes after blockage of chaperone-mediated autophagy. Autophagy 4(4):442–456

    PubMed  CAS  Google Scholar 

  • McBee JK, Palczewski K, Baehr W, Pepperberg DR (2001) Confronting complexity: the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog Retin Eye Res 20(4):469–529

    PubMed  CAS  Google Scholar 

  • McCall K (2010) Genetic control of necrosis: another type of programmed cell death. Curr Opin Cell Biol 22(6):882–888. doi:10.1016/j.ceb.2010.09.002

    PubMed Central  PubMed  CAS  Google Scholar 

  • McLaughlin ME, Sandberg MA, Berson EL, Dryja TP (1993) Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nat Genet 4(2):130–134. doi:10.1038/ng0693-130

    PubMed  CAS  Google Scholar 

  • Metrailler S, Schorderet DF, Cottet S (2012) Early apoptosis of rod photoreceptors in Rpe65(−/−) mice is associated with the upregulated expression of lysosomal-mediated autophagic genes. Exp Eye Res 96(1):70–81. doi:10.1016/j.exer.2011.12.019

    PubMed  CAS  Google Scholar 

  • Michaelides M, Wilkie SE, Jenkins S, Holder GE, Hunt DM, Moore AT, Webster AR (2005) Mutation in the gene GUCA1A, encoding guanylate cyclase-activating protein 1, causes cone, cone-rod, and macular dystrophy. Ophthalmology 112(8):1442–1447. doi:10.1016/j.ophtha.2005.02.024

    PubMed  Google Scholar 

  • Mittag TW, Bayer AU, La VM (1999) Light-induced retinal damage in mice carrying a mutated SOD I gene. Exp Eye Res 69(6):677–683. doi:10.1006/exer.1999.0748

    PubMed  CAS  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature (Lond) 451(7182):1069–1075. doi:10.1038/nature06639

    CAS  Google Scholar 

  • Molday RS, Zhang K (2010) Defective lipid transport and biosynthesis in recessive and dominant Stargardt macular degeneration. Prog Lipid Res 49(4):476–492. doi:10.1016/j.plipres.2010.07.002

    PubMed Central  PubMed  CAS  Google Scholar 

  • Moquin D, Chan FK (2010) The molecular regulation of programmed necrotic cell injury. Trends Biochem Sci 35(8):434–441. doi:10.1016/j.tibs.2010.03.001

    PubMed Central  PubMed  CAS  Google Scholar 

  • Moreira PI, Sayre LM, Zhu X, Nunomura A, Smith MA, Perry G (2010) Detection and localization of markers of oxidative stress by in situ methods: application in the study of Alzheimer disease. Methods Mol Biol 610:419–434. doi:10.1007/978-1-60327-029-8_25

    PubMed  CAS  Google Scholar 

  • Murakami Y, Matsumoto H, Roh M, Giani A, Kataoka K, Morizane Y, Kayama M, Thanos A, Nakatake S, Notomi S, Hisatomi T, Ikeda Y, Ishibashi T, Connor KM, Miller JW, Vavvas DG (2013) Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration. Cell Death Differ. doi:10.1038/cdd.2013.109

    PubMed  Google Scholar 

  • Murakami Y, Matsumoto H, Roh M, Suzuki J, Hisatomi T, Ikeda Y, Miller JW, Vavvas DG (2012) Receptor interacting protein kinase mediates necrotic cone but not rod cell death in a mouse model of inherited degeneration. Proc Natl Acad Sci USA 109(36):14598–14603. doi:10.1073/pnas.1206937109

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nakazawa M (2011) Effects of calcium ion, calpains, and calcium channel blockers on retinitis pigmentosa. J Ophthalmol 2011:292040. doi:10.1155/2011/292040

    PubMed Central  PubMed  Google Scholar 

  • Neal M, Cunningham J (1994) Modulation by endogenous ATP of the light-evoked release of ACh from retinal cholinergic neurones. Br J Pharmacol 113(4):1085–1087

    PubMed Central  PubMed  CAS  Google Scholar 

  • Newman EA (2003) Glial cell inhibition of neurons by release of ATP. J Neurosci 23(5):1659–1666

    PubMed Central  PubMed  CAS  Google Scholar 

  • Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112(4):481–490

    PubMed  CAS  Google Scholar 

  • Ng L, Hurley JB, Dierks B, Srinivas M, Salto C, Vennstrom B, Reh TA, Forrest D (2001) A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat Genet 27(1):94–98. doi:10.1038/83829

    PubMed  CAS  Google Scholar 

  • Ng TF, Streilein JW (2001) Light-induced migration of retinal microglia into the subretinal space. Invest Ophthalmol Vis Sci 42(13):3301–3310

    PubMed  CAS  Google Scholar 

  • Nickla DL, Wallman J (2010) The multifunctional choroid. Prog Retin Eye Res 29(2):144–168. doi:10.1016/j.preteyeres.2009.12.002

    PubMed Central  PubMed  Google Scholar 

  • Notomi S, Hisatomi T, Kanemaru T, Takeda A, Ikeda Y, Enaida H, Kroemer G, Ishibashi T (2011) Critical involvement of extracellular ATP acting on P2RX7 purinergic receptors in photoreceptor cell death. Am J Pathol 179(6):2798–2809. doi:10.1016/j.ajpath.2011.08.035

    PubMed Central  PubMed  CAS  Google Scholar 

  • Notomi S, Hisatomi T, Murakami Y, Terasaki H, Sonoda S, Asato R, Takeda A, Ikeda Y, Enaida H, Sakamoto T, Ishibashi T (2013) Dynamic increase in extracellular ATP accelerates photoreceptor cell apoptosis via ligation of P2RX7 in subretinal hemorrhage. PloS One 8(1):e53338. doi:10.1371/journal.pone.0053338

    PubMed Central  PubMed  CAS  Google Scholar 

  • Oguni M, Tamura H, Kato K, Setogawa T (1996) Chronic retinal effects by ultraviolet irradiation, with special reference to superoxide dismutases. Histol Histopathol 11(3):695–702

    PubMed  CAS  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium–apoptosis link. Nat Rev Mol Cell Biol 4(7):552–565. doi:10.1038/nrm1150

    PubMed  CAS  Google Scholar 

  • Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S (2002) Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA 99(3):1259–1263. doi:10.1073/pnas.241655498

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ozaki T, Ishiguro S, Hirano S, Baba A, Yamashita T, Tomita H, Nakazawa M (2013) Inhibitory peptide of mitochondrial mu-calpain protects against photoreceptor degeneration in rhodopsin transgenic S334ter and P23H rats. PloS One 8(8):e71650. doi:10.1371/journal.pone.0071650

    PubMed Central  PubMed  CAS  Google Scholar 

  • Paquet-Durand F, Azadi S, Hauck SM, Ueffing M, van Veen T, Ekstrom P (2006) Calpain is activated in degenerating photoreceptors in the rd1 mouse. J Neurochem 96(3):802–814. doi:10.1111/j.1471-4159.2005.03628.x

    PubMed  CAS  Google Scholar 

  • Paquet-Durand F, Sanges D, McCall J, Silva J, van Veen T, Marigo V, Ekstrom P (2010) Photoreceptor rescue and toxicity induced by different calpain inhibitors. J Neurochem 115(4):930–940. doi:10.1111/j.1471-4159.2010.06983.x

    PubMed  CAS  Google Scholar 

  • Paquet-Durand F, Silva J, Talukdar T, Johnson LE, Azadi S, van Veen T, Ueffing M, Hauck SM, Ekstrom PA (2007) Excessive activation of poly(ADP-ribose) polymerase contributes to inherited photoreceptor degeneration in the retinal degeneration 1 mouse. J Neurosci 27(38):10311–10319. doi:10.1523/JNEUROSCI.1514-07.2007

    PubMed  CAS  Google Scholar 

  • Pasantes-Morales H, Quiroz H, Quesada O (2002) Treatment with taurine, diltiazem, and vitamin E retards the progressive visual field reduction in retinitis pigmentosa: a 3-year follow-up study. Metab Brain Dis 17(3):183–197

    PubMed  CAS  Google Scholar 

  • Perche O, Doly M, Ranchon-Cole I (2007) Caspase-dependent apoptosis in light-induced retinal degeneration. Invest Ophthalmol Vis Sci 48(6):2753–2759. doi:10.1167/iovs.06-1258

    PubMed  Google Scholar 

  • Perez-Campo R, Lopez-Torres M, Cadenas S, Rojas C, Barja G (1998) The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J Comp Physiol B Biochem System Environ Physiol 168(3):149–158

    CAS  Google Scholar 

  • Perkins GA, Ellisman MH, Fox DA (2003) Three-dimensional analysis of mouse rod and cone mitochondrial cristae architecture: bioenergetic and functional implications. Mol Vis 9:60–73

    PubMed  CAS  Google Scholar 

  • Portera-Cailliau C, Sung CH, Nathans J, Adler R (1994) Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc Natl Acad Sci USA 91(3):974–978

    PubMed Central  PubMed  CAS  Google Scholar 

  • Priya RR, Chew EY, Swaroop A (2012) Genetic studies of age-related macular degeneration: lessons, challenges, and opportunities for disease management. Ophthalmology 119(12):2526–2536. doi:10.1016/j.ophtha.2012.06.042

    PubMed  Google Scholar 

  • Punzo C, Kornacker K, Cepko CL (2009) Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12(1):44–52. doi:10.1038/nn.2234

    PubMed Central  PubMed  CAS  Google Scholar 

  • Puthussery T, Fletcher E (2009) Extracellular ATP induces retinal photoreceptor apoptosis through activation of purinoceptors in rodents. J Comp Neurol 513(4):430–440. doi:10.1002/cne.21964

    PubMed  CAS  Google Scholar 

  • Puthussery T, Fletcher EL (2004) Synaptic localization of P2X7 receptors in the rat retina. J Comp Neurol 472(1):13–23. doi:10.1002/cne.20045

    PubMed  CAS  Google Scholar 

  • Puthussery T, Yee P, Vingrys AJ, Fletcher EL (2006) Evidence for the involvement of purinergic P2X receptors in outer retinal processing. Eur J Neurosci 24(1):7–19. doi:10.1111/j.1460-9568.2006.04895.x

    PubMed  Google Scholar 

  • Ratnapriya R, Swaroop A (2013) Genetic architecture of retinal and macular degenerative diseases: the promise and challenges of next-generation sequencing. Genome Med 5(9):84. doi:10.1186/gm488

    PubMed  Google Scholar 

  • Read DS, McCall MA, Gregg RG (2002) Absence of voltage-dependent calcium channels delays photoreceptor degeneration in rd mice. Exp Eye Res 75(4):415–420

    PubMed  CAS  Google Scholar 

  • Redmond TM, Yu S, Lee E, Bok D, Hamasaki D, Chen N, Goletz P, Ma JX, Crouch RK, Pfeifer K (1998) Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet 20(4):344–351. doi:10.1038/3813

    PubMed  CAS  Google Scholar 

  • Reme CE, Wolfrum U, Imsand C, Hafezi F, Williams TP (1999) Photoreceptor autophagy: effects of light history on number and opsin content of degradative vacuoles. Invest Ophthalmol Vis Sci 40(10):2398–2404

    PubMed  CAS  Google Scholar 

  • Rhee KD, Ruiz A, Duncan JL, Hauswirth WW, Lavail MM, Bok D, Yang XJ (2007) Molecular and cellular alterations induced by sustained expression of ciliary neurotrophic factor in a mouse model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 48(3):1389–1400. doi:10.1167/iovs.06-0677

    PubMed  Google Scholar 

  • Rich KA, Zhan Y, Blanks JC (1997) Aberrant expression of c-Fos accompanies photoreceptor cell death in the rd mouse. J Neurobiol 32(6):593–612

    PubMed  CAS  Google Scholar 

  • Rodriguez-Muela N, Koga H, Garcia-Ledo L, de la Villa P, de la Rosa EJ, Cuervo AM, Boya P (2013) Balance between autophagic pathways preserves retinal homeostasis. Aging Cell 12(3):478–488. doi:10.1111/acel.12072

    PubMed  CAS  Google Scholar 

  • Roger JE, Ranganath K, Zhao L, Cojocaru RI, Brooks M, Gotoh N, Veleri S, Hiriyanna A, Rachel RA, Campos MM, Fariss RN, Wong WT, Swaroop A (2012) Preservation of cone photoreceptors after a rapid yet transient degeneration and remodeling in cone-only Nrl−/− mouse retina. J Neurosci 32(2):528–541. doi:10.1523/JNEUROSCI.3591-11.2012

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rosenbaum DM, Degterev A, David J, Rosenbaum PS, Roth S, Grotta JC, Cuny GD, Yuan J, Savitz SI (2010) Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J Neurosci Res 88(7):1569–1576. doi:10.1002/jnr.22314

    PubMed  CAS  Google Scholar 

  • Rudolf M, Malek G, Messinger JD, Clark ME, Wang L, Curcio CA (2008) Sub-retinal drusenoid deposits in human retina: organization and composition. Exp Eye Res 87(5):402–408. doi:10.1016/j.exer.2008.07.010

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sahaboglu A, Tanimoto N, Kaur J, Sancho-Pelluz J, Huber G, Fahl E, Arango-Gonzalez B, Zrenner E, Ekstrom P, Lowenheim H, Seeliger M, Paquet-Durand F (2010) PARP1 gene knock-out increases resistance to retinal degeneration without affecting retinal function. PloS One 5(11):e15495. doi:10.1371/journal.pone.0015495

    PubMed Central  PubMed  Google Scholar 

  • Sampayo JN, Olsen A, Lithgow GJ (2003) Oxidative stress in Caenorhabditis elegans: protective effects of superoxide dismutase/catalase mimetics. Aging Cell 2(6):319–326

    PubMed  CAS  Google Scholar 

  • Sastre J, Pallardo FV, Vina J (2000) Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life 49(5):427–435. doi:10.1080/152165400410281

    PubMed  CAS  Google Scholar 

  • Schipper-Krom S, Juenemann K, Reits EA (2012) The ubiquitin-proteasome system in Huntington’s disease: are proteasomes impaired, initiators of disease, or coming to the rescue? Biochem Res Int 2012:837015. doi:10.1155/2012/837015

    PubMed Central  PubMed  Google Scholar 

  • Schoch KM, von Reyn CR, Bian J, Telling GC, Meaney DF, Saatman KE (2013) Brain injury-induced proteolysis is reduced in a novel calpastatin-overexpressing transgenic mouse. J Neurochem 125(6):909–920. doi:10.1111/jnc.12144

    PubMed  CAS  Google Scholar 

  • Schwiebert EM (2000) Extracellular ATP-mediated propagation of Ca(2+) waves. Focus on mechanical strain-induced Ca(2+) waves are propagated via ATP release and purinergic receptor activation. Am J Physiol Cell Physiol 279(2):C281–283

    PubMed  CAS  Google Scholar 

  • Shahinfar S, Edward DP, Tso MO (1991) A pathologic study of photoreceptor cell death in retinal photic injury. Curr Eye Res 10(1):47–59

    PubMed  CAS  Google Scholar 

  • Sharma AK, Rohrer B (2004) Calcium-induced calpain mediates apoptosis via caspase-3 in a mouse photoreceptor cell line. J Biol Chem 279(34):35564–35572. doi:10.1074/jbc.M401037200

    PubMed  CAS  Google Scholar 

  • Sharon D, Blackshaw S, Cepko CL, Dryja TP (2002) Profile of the genes expressed in the human peripheral retina, macula, and retinal pigment epithelium determined through serial analysis of gene expression (SAGE). Proc Natl Acad Sci USA 99(1):315–320. doi:10.1073/pnas.012582799

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shen J, Yang X, Dong A, Petters RM, Peng YW, Wong F, Campochiaro PA (2005) Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa. J Cell Physiol 203(3):457–464. doi:10.1002/jcp.20346

    PubMed  CAS  Google Scholar 

  • Sherman MY, Goldberg AL (2001) Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29(1):15–32

    PubMed  CAS  Google Scholar 

  • Sieving PA, Caruso RC, Tao W, Coleman HR, Thompson DJ, Fullmer KR, Bush RA (2006) Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci USA 103(10):3896–3901. doi:10.1073/pnas.0600236103

    PubMed Central  PubMed  CAS  Google Scholar 

  • Simunovic MP, Moore AT (1998) The cone dystrophies. Eye 12(pt 3b):553–565. doi:10.1038/eye.1998.145

    PubMed  Google Scholar 

  • Smith MA, Schnellmann RG (2012) Calpains, mitochondria, and apoptosis. Cardiovasc Res 96(1):32–37. doi:10.1093/cvr/cvs163

    PubMed Central  PubMed  CAS  Google Scholar 

  • Smith W, Assink J, Klein R, Mitchell P, Klaver CC, Klein BE, Hofman A, Jensen S, Wang JJ, de Jong PT (2001) Risk factors for age-related macular degeneration: pooled findings from three continents. Ophthalmology 108(4):697–704

    PubMed  CAS  Google Scholar 

  • Snyder H, Mensah K, Theisler C, Lee J, Matouschek A, Wolozin B (2003) Aggregated and monomeric alpha-synuclein bind to the S6' proteasomal protein and inhibit proteasomal function. J Biol Chem 278(14):11753–11759. doi:10.1074/jbc.M208641200

    PubMed  CAS  Google Scholar 

  • Solovei I, Kreysing M, Lanctot C, Kosem S, Peichl L, Cremer T, Guck J, Joffe B (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137(2):356–368. doi:10.1016/j.cell.2009.01.052

    PubMed  CAS  Google Scholar 

  • Stone EM (2007) Macular degeneration. Annu Rev Med 58:477–490. doi:10.1146/annurev.med.58.111405.133335

    PubMed  CAS  Google Scholar 

  • Sun H, Tsunenari T, Yau KW, Nathans J (2002) The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci USA 99(6):4008–4013. doi:10.1073/pnas.052692999

    PubMed Central  PubMed  CAS  Google Scholar 

  • Surgucheva I, Ninkina N, Buchman VL, Grasing K, Surguchov A (2005) Protein aggregation in retinal cells and approaches to cell protection. Cell Mol Neurobiol 25(6):1051–1066. doi:10.1007/s10571-005-8474-1

    PubMed  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature (Lond) 397(6718):441–446. doi:10.1038/17135

    CAS  Google Scholar 

  • Suzuki K, Hata S, Kawabata Y, Sorimachi H (2004) Structure, activation, and biology of calpain. Diabetes 53(suppl 1):S12–S18

    PubMed  CAS  Google Scholar 

  • Suzuki M, Kamei M, Itabe H, Yoneda K, Bando H, Kume N, Tano Y (2007) Oxidized phospholipids in the macula increase with age and in eyes with age-related macular degeneration. Mol Vis 13:772–778

    PubMed Central  PubMed  CAS  Google Scholar 

  • Swaroop A, Branham KE, Chen W, Abecasis G (2007) Genetic susceptibility to age-related macular degeneration: a paradigm for dissecting complex disease traits. Human Mol Genet 16(Spec No. 2):R174–R182. doi:10.1093/hmg/ddm212

    Google Scholar 

  • Swaroop A, Chew EY, Rickman CB, Abecasis GR (2009) Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu Rev Genomics Hum Genet 10:19–43. doi:10.1146/annurev.genom.9.081307.164350

    PubMed Central  PubMed  CAS  Google Scholar 

  • Swaroop A, Kim D, Forrest D (2010) Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat Rev Neurosci 11(8):563–576. doi:10.1038/nrn2880

    PubMed  CAS  Google Scholar 

  • Tai HC, Schuman EM (2008) Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci 9(11):826–838. doi:10.1038/nrn2499

    PubMed  CAS  Google Scholar 

  • Takano Y, Ohguro H, Dezawa M, Ishikawa H, Yamazaki H, Ohguro I, Mamiya K, Metoki T, Ishikawa F, Nakazawa M (2004) Study of drug effects of calcium channel blockers on retinal degeneration of rd mouse. Biochem Biophys Res Commun 313(4):1015–1022

    PubMed  CAS  Google Scholar 

  • Talcott KE, Ratnam K, Sundquist SM, Lucero AS, Lujan BJ, Tao W, Porco TC, Roorda A, Duncan JL (2011) Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Invest Ophthalmol Vis Sci 52(5):2219–2226. doi:10.1167/iovs.10-6479

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tanaka T, Nakamura H, Nishiyama A, Hosoi F, Masutani H, Wada H, Yodoi J (2000) Redox regulation by thioredoxin superfamily: protection against oxidative stress and aging. Free Radic Res 33(6):851–855

    PubMed  CAS  Google Scholar 

  • Tanito M, Agbaga MP, Anderson RE (2007a) Upregulation of thioredoxin system via Nrf2-antioxidant responsive element pathway in adaptive-retinal neuroprotection in vivo and in vitro. Free Radic Biol Med 42(12):1838–1850. doi:10.1016/j.freeradbiomed.2007.03.018

    PubMed  CAS  Google Scholar 

  • Tanito M, Kaidzu S, Anderson RE (2007b) Delayed loss of cone and remaining rod photoreceptor cells due to impairment of choroidal circulation after acute light exposure in rats. Invest Ophthalmol Vis Sci 48(4):1864–1872. doi:10.1167/iovs.06-1065

    PubMed  Google Scholar 

  • Tanito M, Masutani H, Kim YC, Nishikawa M, Ohira A, Yodoi J (2005) Sulforaphane induces thioredoxin through the antioxidant-responsive element and attenuates retinal light damage in mice. Invest Ophthalmol Vis Sci 46(3):979–987. doi:10.1167/iovs.04-1120

    PubMed  Google Scholar 

  • Tanito M, Masutani H, Nakamura H, Ohira A, Yodoi J (2002a) Cytoprotective effect of thioredoxin against retinal photic injury in mice. Invest Ophthalmol Vis Sci 43(4):1162–1167

    PubMed  Google Scholar 

  • Tanito M, Masutani H, Nakamura H, Oka S, Ohira A, Yodoi J (2002b) Attenuation of retinal photooxidative damage in thioredoxin transgenic mice. Neurosci Lett 326(2):142–146

    PubMed  CAS  Google Scholar 

  • Thapa A, Morris L, Xu J, Ma H, Michalakis S, Biel M, Ding XQ (2012) Endoplasmic reticulum stress-associated cone photoreceptor degeneration in cyclic nucleotide-gated channel deficiency. J Biol Chem 287(22):18018–18029. doi:10.1074/jbc.M112.342220

    PubMed Central  PubMed  CAS  Google Scholar 

  • Traboulsi EI (2010) The Marshall M. Parks Memorial Lecture. Making sense of early-onset childhood retinal dystrophies: the clinical phenotype of Leber congenital amaurosis. Br J Ophthalmol 94(10):1281–1287. doi:10.1136/bjo.2009.165654

    PubMed  CAS  Google Scholar 

  • Trichonas G, Murakami Y, Thanos A, Morizane Y, Kayama M, Debouck CM, Hisatomi T, Miller JW, Vavvas DG (2010) Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis. Proc Natl Acad Sci USA 107(50):21695–21700. doi:10.1073/pnas.1009179107

    PubMed Central  PubMed  CAS  Google Scholar 

  • Trifunovic D, Sahaboglu A, Kaur J, Mencl S, Zrenner E, Ueffing M, Arango-Gonzalez B, Paquet-Durand F (2012) Neuroprotective strategies for the treatment of inherited photoreceptor degeneration. Curr Mol Med 12(5):598–612

    PubMed  CAS  Google Scholar 

  • Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10):700–714. doi:10.1038/nrm2970

    PubMed  CAS  Google Scholar 

  • Vecino E, Hernandez M, Garcia M (2004) Cell death in the developing vertebrate retina. Int J Dev Biol 48(8-9):965–974. doi:10.1387/ijdb.041891ev

    PubMed  CAS  Google Scholar 

  • Volonte C, Amadio S, Cavaliere F, D’Ambrosi N, Vacca F, Bernardi G (2003) Extracellular ATP and neurodegeneration. Curr Drug Targets CNS Neurol Disord 2(6):403–412

    PubMed  CAS  Google Scholar 

  • Vucic D, Dixit VM, Wertz IE (2011) Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol 12(7):439–452. doi:10.1038/nrm3143

    PubMed  CAS  Google Scholar 

  • Vuong L, Brobst DE, Ivanovic I, Sherry DM, Al-Ubaidi MR (2013) p53 selectively regulates developmental apoptosis of rod photoreceptors. PloS One 8(6):e67381. doi:10.1371/journal.pone.0067381

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang AL, Lukas TJ, Yuan M, Du N, Tso MO, Neufeld AH (2009a) Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PloS One 4(1):e4160. doi:10.1371/journal.pone.0004160

    PubMed Central  PubMed  Google Scholar 

  • Wang AL, Lukas TJ, Yuan M, Du N, Tso MO, Neufeld AH (2009b) Autophagy, exosomes and drusen formation in age-related macular degeneration. Autophagy 5(4):563–564

    PubMed  CAS  Google Scholar 

  • Wang X, Arcuino G, Takano T, Lin J, Peng WG, Wan P, Li P, Xu Q, Liu QS, Goldman SA, Nedergaard M (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 10(8):821–827. doi:10.1038/nm1082

    PubMed  CAS  Google Scholar 

  • Wang XW, Tan BZ, Sun M, Ho B, Ding JL (2008) Thioredoxin-like 6 protects retinal cell line from photooxidative damage by upregulating NF-kappaB activity. Free Radic Biol Med 45(3):336–344. doi:10.1016/j.freeradbiomed.2008.04.028

    PubMed  CAS  Google Scholar 

  • Ward MM, Puthussery T, Vessey KA, Fletcher EL (2010) The role of purinergic receptors in retinal function and disease. Adv Exp Med Biol 664:385–391. doi:10.1007/978-1-4419-1399-9_44

    PubMed  CAS  Google Scholar 

  • Weisman GA, Woods LT, Erb L, Seye CI (2012) P2Y receptors in the mammalian nervous system: pharmacology, ligands and therapeutic potential. CNS Neurol Disord Drug Targets 11(6):722–738

    PubMed  CAS  Google Scholar 

  • Wen R, Tao W, Li Y, Sieving PA (2012) CNTF and retina. Prog Retin Eye Res 31(2):136–151. doi:10.1016/j.preteyeres.2011.11.005

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wenzel A, Grimm C, Marti A, Kueng-Hitz N, Hafezi F, Niemeyer G, Reme CE (2000) c-fos controls the “private pathway” of light-induced apoptosis of retinal photoreceptors. J Neurosci 20(1):81–88

    PubMed  CAS  Google Scholar 

  • Wenzel A, Grimm C, Samardzija M, Reme CE (2005) Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog Retin Eye Res 24(2):275–306. doi:10.1016/j.preteyeres.2004.08.002

    PubMed  CAS  Google Scholar 

  • Wingrave JM, Sribnick EA, Wilford GG, Matzelle DD, Mou JA, Ray SK, Hogan EL, Banik NL (2004) Higher calpastatin levels correlate with resistance to calpain-mediated proteolysis and neuronal apoptosis in juvenile rats after spinal cord injury. J Neurotrauma 21(9):1240–1254. doi:10.1089/neu.2004.21.1240

    PubMed  Google Scholar 

  • Winkler BS (2008) An hypothesis to account for the renewal of outer segments in rod and cone photoreceptor cells: renewal as a surrogate antioxidant. Invest Ophthalmol Vis Sci 49(8):3259–3261. doi:10.1167/iovs.08-1785

    PubMed  Google Scholar 

  • Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS (2010) Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 11(4):273–284. doi:10.1038/nrg2717

    PubMed  CAS  Google Scholar 

  • Wright AF, Jacobson SG, Cideciyan AV, Roman AJ, Shu X, Vlachantoni D, McInnes RR, Riemersma RA (2004) Lifespan and mitochondrial control of neurodegeneration. Nat Genet 36(11):1153–1158. doi:10.1038/ng1448

    PubMed  CAS  Google Scholar 

  • Wright AF, Murphy MP, Turnbull DM (2009) Do organellar genomes function as long-term redox damage sensors? Trends Genet 25(6):253–261. doi:10.1016/j.tig.2009.04.006

    PubMed  CAS  Google Scholar 

  • Yang JH, Basinger SF, Gross RL, Wu SM (2003) Blue light-induced generation of reactive oxygen species in photoreceptor ellipsoids requires mitochondrial electron transport. Invest Ophthalmol Vis Sci 44(3):1312–1319

    PubMed  Google Scholar 

  • Yu DY, Cringle SJ, Su EN, Yu PK (2000) Intraretinal oxygen levels before and after photoreceptor loss in the RCS rat. Invest Ophthalmol Vis Sci 41(12):3999–4006

    PubMed  CAS  Google Scholar 

  • Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, Dawson VL (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci USA 103(48):18314–18319. doi:10.1073/pnas.0606528103

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297(5579):259–263. doi:10.1126/science.1072221

    PubMed  CAS  Google Scholar 

  • Yvert G, Lindenberg KS, Picaud S, Landwehrmeyer GB, Sahel JA, Mandel JL (2000) Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice. Hum Mol Genet 9(17):2491–2506

    PubMed  CAS  Google Scholar 

  • Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325(5938):332–336. doi:10.1126/science.1172308

    PubMed  CAS  Google Scholar 

  • Zhang K, Kniazeva M, Han M, Li W, Yu Z, Yang Z, Li Y, Metzker ML, Allikmets R, Zack DJ, Kakuk LE, Lagali PS, Wong PW, MacDonald IM, Sieving PA, Figueroa DJ, Austin CP, Gould RJ, Ayyagari R, Petrukhin K (2001) A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat Genet 27(1):89–93. doi:10.1038/83817

    PubMed  CAS  Google Scholar 

  • Zhang PP, Yang XL, Zhong YM (2012) Cellular localization of P2Y(6) receptor in rat retina. Neuroscience 220:62–69. doi:10.1016/j.neuroscience.2012.06.032

    PubMed  CAS  Google Scholar 

  • Zhivotovsky B, Orrenius S (2011) Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium 50(3):211–221. doi:10.1016/j.ceca.2011.03.003

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Swaroop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan (outside the USA)

About this chapter

Cite this chapter

Roger, J.E., Swaroop, A. (2014). Photoreceptor Degeneration: Molecular Mechanisms of Photoreceptor Degeneration. In: Furukawa, T., Hurley, J., Kawamura, S. (eds) Vertebrate Photoreceptors. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54880-5_11

Download citation

Publish with us

Policies and ethics