Skip to main content

Hair Cell

  • Chapter
  • First Online:
Regenerative Medicine for the Inner Ear
  • 1014 Accesses

Abstract

Hair cells are the main components of the inner ears that facilitate mechano-electrical transduction to perceive sound or change in body position. Hair cells are highly differentiated and have many specialized characteristics. Morphologically, hair cells have hair bundles on their apical side and receive innervation from the primary auditory nerve. Physiologically, deflection of hair bundles causes depolarization of membrane potential and as a result, hair cells transmit signals to the auditory nerve by releasing neurotransmitters. There are six different sensory epithelia and four different types of hair cells: inner and outer hair cells in the cochlea and type I and II hair cells in the vestibular organs. Each type of hair cell has different morphological and functional characteristics. Moreover, these hair cells are localized with other cell types (e.g., supporting cells) in specified patterns and polarity to function properly.

Owing to these highly differentiated characteristics, it is difficult to regenerate hair cells. Moreover, proliferation of mammalian cochlear hair cells is confined within embryonic period. However, recent advancement in the knowledge of developmental biology and the rapid progress in the field of stem cell biology are anticipated to resolve the problems that prevent the successful regeneration of mammalian hair cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corey DP, Hudspeth AJ. Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci. 1983;3(5):962–76.

    CAS  PubMed  Google Scholar 

  2. Pickles JO, Comis SD, Osborne MP. Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear Res. 1984;15(2):103–12.

    Article  CAS  PubMed  Google Scholar 

  3. Puel JL. Chemical synaptic transmission in the cochlea. Prog Neurobiol. 1995;47(6):449–76.

    Article  CAS  PubMed  Google Scholar 

  4. Usami SI, Takumi Y, Matsubara A, Fujita S, Ottersen OP. Neurotransmission in the vestibular end organs–glutamatergic transmission in the afferent synapses of hair cells. Uchu Seibutsu Kagaku. 2001;15(4):367–70.

    CAS  PubMed  Google Scholar 

  5. Kawashima Y, Geleoc GS, Kurima K, Labay V, Lelli A, Asai Y, et al. Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J Clin Invest. 2011;121(12):4796–809. doi:10.1172/JCI60405.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ahmed ZM, Goodyear R, Riazuddin S, Lagziel A, Legan PK, Behra M, et al. The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15. J Neurosci. 2006;26(26):7022–34. doi:10.1523/JNEUROSCI.1163-06.2006.

    Article  CAS  PubMed  Google Scholar 

  7. Siemens J, Lillo C, Dumont RA, Reynolds A, Williams DS, Gillespie PG, et al. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature. 2004;428(6986):950–5. doi:10.1038/nature02483.

    Article  CAS  PubMed  Google Scholar 

  8. Sollner C, Rauch GJ, Siemens J, Geisler R, Schuster SC, Muller U, et al. Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature. 2004;428(6986):955–9. doi:10.1038/nature02484.

    Article  PubMed  Google Scholar 

  9. Spoendlin H. Anatomy of cochlear innervation. Am J Otolaryngol. 1985;6(6):453–67.

    Article  CAS  PubMed  Google Scholar 

  10. Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science. 1985;227(4683):194–6.

    Article  CAS  PubMed  Google Scholar 

  11. Guinan Jr JJ. Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear. 2006;27(6):589–607. doi:10.1097/01.aud.0000240507.83072.e7.

    Article  PubMed  Google Scholar 

  12. Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P. Prestin is the motor protein of cochlear outer hair cells. Nature. 2000;405(6783):149–55. doi:10.1038/35012009.

    Article  CAS  PubMed  Google Scholar 

  13. Liberman MC, Gao J, He DZ, Wu X, Jia S, Zuo J. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature. 2002;419(6904):300–4. doi:10.1038/nature01059.

    Article  CAS  PubMed  Google Scholar 

  14. Goldberg JM. The vestibular end organs: morphological and physiological diversity of afferents. Curr Opin Neurobiol. 1991;1(2):229–35.

    Article  CAS  PubMed  Google Scholar 

  15. Baird RA, Desmadryl G, Fernandez C, Goldberg JM. The vestibular nerve of the chinchilla. II. Relation between afferent response properties and peripheral innervation patterns in the semicircular canals. J Neurophysiol. 1988;60(1):182–203.

    CAS  PubMed  Google Scholar 

  16. Driver EC, Pryor SP, Hill P, Turner J, Ruther U, Biesecker LG, et al. Hedgehog signaling regulates sensory cell formation and auditory function in mice and humans. J Neurosci. 2008;28(29):7350–8. doi:10.1523/JNEUROSCI.0312-08.2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kitajiri SI, Furuse M, Morita K, Saishin-Kiuchi Y, Kido H, Ito J, et al. Expression patterns of claudins, tight junction adhesion molecules, in the inner ear. Hear Res. 2004;187(1–2):25–34.

    Article  CAS  PubMed  Google Scholar 

  18. Lanford PJ, Lan Y, Jiang R, Lindsell C, Weinmaster G, Gridley T, et al. Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat Genet. 1999;21(3):289–92.

    Article  CAS  PubMed  Google Scholar 

  19. Yamamoto N, Chang W, Kelley MW. Rbpj regulates development of prosensory cells in the mammalian inner ear. Dev Biol. 2011;353(2):367–79. doi:10.1016/j.ydbio.2011.03.016.

    Article  CAS  PubMed  Google Scholar 

  20. Takebayashi S, Yamamoto N, Yabe D, Fukuda H, Kojima K, Ito J, et al. Multiple roles of Notch signaling in cochlear development. Dev Biol. 2007;307(1):165–78.

    Article  CAS  PubMed  Google Scholar 

  21. Yamamoto N, Okano T, Ma X, Adelstein RS, Kelley MW. Myosin II regulates extension, growth and patterning in the mammalian cochlear duct. Development. 2009;136(12):1977–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Montcouquiol M, Rachel RA, Lanford PJ, Copeland NG, Jenkins NA, Kelley MW. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature. 2003;423(6936):173–7. doi:10.1038/nature01618.

    Article  CAS  PubMed  Google Scholar 

  23. Ruben RJ. Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol. 1967:Suppl 220;1–44.

    Google Scholar 

  24. Corwin JT, Cotanche DA. Regeneration of sensory hair cells after acoustic trauma. Science. 1988;240(4860):1772–4.

    Article  CAS  PubMed  Google Scholar 

  25. Ryals BM, Rubel EW. Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science. 1988;240(4860):1774–6.

    Article  CAS  PubMed  Google Scholar 

  26. Adler HJ, Raphael Y. New hair cells arise from supporting cell conversion in the acoustically damaged chick inner ear. Neurosci Lett. 1996;205(1):17–20.

    CAS  PubMed  Google Scholar 

  27. Hayashi Y, Yamamoto N, Nakagawa T, Ito J. Insulin-like growth factor 1 inhibits hair cell apoptosis and promotes the cell cycle of supporting cells by activating different downstream cascades after pharmacological hair cell injury in neonatal mice. Mol Cell Neurosci. 2013;56:29–38. doi:10.1016/j.mcn.2013.03.003.

    Article  CAS  PubMed  Google Scholar 

  28. Yamamoto N, Tanigaki K, Tsuji M, Yabe D, Ito J, Honjo T. Inhibition of Notch/RBP-J signaling induces hair cell formation in neonate mouse cochleas. J Mol Med. 2006;84(1):37–45. doi:10.1007/s00109-005-0706-9.

    Article  CAS  PubMed  Google Scholar 

  29. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. doi:10.1016/j.cell.2007.11.019.

    Article  CAS  PubMed  Google Scholar 

  30. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi:10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  31. Oshima K, Shin K, Diensthuber M, Peng AW, Ricci AJ, Heller S. Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells. Cell. 2010;141(4):704–16. doi:10.1016/j.cell.2010.03.035.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Koehler KR, Mikosz AM, Molosh AI, Patel D, Hashino E. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature. 2013;500(7461):217–21. doi:10.1038/nature12298.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Yamamoto, N. (2014). Hair Cell. In: Ito, J. (eds) Regenerative Medicine for the Inner Ear. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54862-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54862-1_3

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54861-4

  • Online ISBN: 978-4-431-54862-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics