Skip to main content

Switching Control of Oxide-Based Resistive Random-Access Memory by Valence State Control of Oxide

  • Chapter
  • First Online:
Nanoscale Redox Reaction at Metal/Oxide Interface

Part of the book series: NIMS Monographs ((NIMSM))

  • 286 Accesses

Abstract

Controlling the switching voltage and initial conductive filament formation of resistive random-access memory (ReRAM) is beneficial for actual applications. As summarized in Chap. 4, the density of oxygen vacancies is important in terms of controlling the conductive filament formation and switching of a nanoionic-type ReRAM structure. In this chapter, as an example of the control of oxygen vacancies and switching properties of the ReRAM structure, the intentional change in the valence state of an oxide layer is described. We investigated the Ta-Nb binary oxide ((TaxNb1-x)2O5) system as a dielectric oxide layer by a combinatorial method. A combinatorial pulsed laser deposition method was used to fabricate the (TaxNb1-x)2O5 system systematically. X-ray photoelectron spectroscopy revealed defect formation relating to Ta and the compensation of oxygen vacancies caused by a change in the valence of Nb. As the Ta content decreased, a decrease in the threshold voltage of the low-resistance state and an enhancement of the leakage current were observed, meaning that the switching properties can be controlled by controlling the (TaxNb1-x)2O5 system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haemori M, Nagata T, Chikyow T (2009) Impact of Cu electrode on switching behavior in a Cu/HfO2/Pt structure and resultant Cu ion diffusion. Appl Phys Express 2:061401. https://doi.org/10.1143/APEX.2.061401

    Article  CAS  Google Scholar 

  2. Nagata T, Haemori M, Yamashita Y, Iwashita Y, Yoshikawa H, Kobayashi K, Chikyow T (2010) Oxygen migration at Pt/HfO2/Pt interface under bias operation. Appl Phys Lett 97:082902. https://doi.org/10.1063/1.3483756

    Article  CAS  Google Scholar 

  3. Nagata T, Haemori M, Yamashita Y, Yoshikawa H, Iwashita Y, Kobayashi K, Chikyow T (2011) Bias application hard X-ray photoelectron spectroscopy study of forming process of Cu/HfO2/Pt resistive random access memory structure. Appl Phys Lett 99:223517. https://doi.org/10.1063/1.3664781

    Article  CAS  Google Scholar 

  4. Ellingham HJT (1944) Transactions and communications. J Soc Chem Ind (London) 63:125–160. https://doi.org/10.1002/jctb.5000630501

    Article  CAS  Google Scholar 

  5. Kerrec O, Devilliers D, Groult H, Marcus P (1998) Study of dry and electrogenerated Ta2O5 and Ta:Ta2O5: Pt structures by XPS. Mat Sci Eng B55:134–142. https://doi.org/10.1016/S0921-5107(98)00177-9

    Article  CAS  Google Scholar 

  6. Kohli S, McCurdy PR, Rithner CD, Dorhout PK, Dummer AM, Brizuela F, Menoni CS (2004) X-ray characterization of oriented β-tantalum films. Thin Solid Films 469:404–409. https://doi.org/10.1016/j.tsf.2004.09.001

    Article  CAS  Google Scholar 

  7. Fontaine R, Caillat R, Feve L, Guittet MJ (1977) Déplacement chimique ESCA dans la série des oxydes du niobium. J Electron Spectrosc Relat Phenom 10:349–357. https://doi.org/10.1016/0368-2048(77)85032-9

    Article  CAS  Google Scholar 

  8. Simon D, Perrin C, Baillif P (1976) Electron spectrometric study (ESCA) of niobium and its oxides. Application to its oxidation at high temperature and low oxygen pressure. C R Acad Sci Ser C 283:241–244

    CAS  Google Scholar 

  9. Yang JJ, Pickett MD, Li X, Ohlberg DAA, Stewart DR, Williams RS (2008) Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotechnol 3:429–433. https://doi.org/10.1038/nnano.2008.160

    Article  CAS  Google Scholar 

  10. Schroeder H, Jeong DS (2007) Resistive switching in a Pt/TiO2/Pt thin film stack—a candidate for a nonvolatile ReRAM. Microelec Eng 84:1982–1985. https://doi.org/10.1016/j.mee.2007.04.042

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Nagata .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 National Institute for Materials Science, Japan

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagata, T. (2020). Switching Control of Oxide-Based Resistive Random-Access Memory by Valence State Control of Oxide. In: Nanoscale Redox Reaction at Metal/Oxide Interface. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54850-8_5

Download citation

Publish with us

Policies and ethics