Turnpike Properties for Nonconcave Problems

  • Alexander J. ZaslavskiEmail author
Part of the Advances in Mathematical Economics book series (MATHECON, volume 18)


In this survey paper we discuss recent developments in the turnpike theory for nonconvex (nonconcave) problems. We also establish a new result on agreeable solutions for variational problems with extended-valued integrands.

Key words

Agreeable function Good program Overtaking optimal program Turnpike property 


  1. 1.
    Anderson, B.D.O., Moore, J.B.: Linear Optimal Control. Prentice-Hall, Englewood Cliffs (1971)zbMATHGoogle Scholar
  2. 2.
    Aseev, S.M., Kryazhimskiy, A.V.: The Pontryagin Maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons. SIAM J. Control Optim. 43, 1094–1119 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Aseev, S.M., Veliov, V.M.: Maximum principle for infinite-horizon optimal control problems with dominating discount. Dyn. Contin. Discrete Impulsive Syst. Ser. B 19, 43–63 (2012)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Atsumi, H.: Neoclassical growth and the efficient program of capital accumulation. Rev. Econ. Stud. 32, 127–136 (1965)CrossRefGoogle Scholar
  5. 5.
    Aubry, S., Le Daeron, P.Y.: The discrete Frenkel-Kontorova model and its extensions I. Physica D 8, 381–422 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Baumeister, J., Leitao, A., Silva, G.N.: On the value function for nonautonomous optimal control problem with infinite horizon. Syst. Control Lett. 56, 188–196 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Blot, J.: Infinite-horizon Pontryagin principles without invertibility. J. Nonlinear Convex Anal. 10, 177–189 (2009)MathSciNetGoogle Scholar
  8. 8.
    Blot, J., Cartigny, P.: Optimality in infinite-horizon variational problems under sign conditions. J. Optim. Theory Appl. 106, 411–419 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Blot, J., Hayek, N.: Sufficient conditions for infinite-horizon calculus of variations problems. ESAIM Control Optim. Calc. Var. 5, 279–292 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Bright, I.: A reduction of topological infinite-horizon optimization to periodic optimization in a class of compact 2-manifolds. J. Math. Anal. Appl. 394, 84–101 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Brock, W.A.: On existence of weakly maximal programmes in a multi-sector economy. Rev. Econ. Stud. 37, 275–280 (1970)CrossRefzbMATHGoogle Scholar
  12. 12.
    Carlson, D.A.: The existence of catching-up optimal solutions for a class of infinite horizon optimal control problems with time delay. SIAM J. Control Optim. 28, 402–422 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Carlson, D.A., Haurie, A., Leizarowitz, A.: Infinite Horizon Optimal Control. Springer, Berlin (1991)CrossRefzbMATHGoogle Scholar
  14. 14.
    Cartigny, P., Michel, P.: On a sufficient transversality condition for infinite horizon optimal control problems. Automatica 39, 1007–1010 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Coleman, B.D., Marcus, M., Mizel, V.J.: On the thermodynamics of periodic phases. Arch. Ration. Mech. Anal. 117, 321–347 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Gaitsgory, V., Rossomakhine, S., Thatcher, N.: Approximate solution of the HJB inequality related to the infinite horizon optimal control problem with discounting. Dyn. Contin. Discrete Impulsive Syst. Ser. B 19, 65–92 (2012)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Gale, D.: On optimal development in a multi-sector economy. Rev. Econ. Stud. 34, 1–18 (1967)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Guo, X., Hernandez-Lerma, O.: Zero-sum continuous-time Markov games with unbounded transition and discounted payoff rates. Bernoulli 11, 1009–1029 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Hammond, P.J.: Consistent planning and intertemporal welfare economics. University of Cambridge, Cambridge (1974)Google Scholar
  20. 20.
    Hammond, P.J.: Agreeable plans with many capital goods. Rev. Econ. Stud. 42, 1–14 (1975)CrossRefzbMATHGoogle Scholar
  21. 21.
    Hammond, P.J., Mirrlees, J.A.: Agreeable plans. In: Models of Economic Growth, pp. 283–299. Wiley, New York (1973)Google Scholar
  22. 22.
    Hayek, N.: Infinite horizon multiobjective optimal control problems in the discrete time case. Optimization 60, 509–529 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Jasso-Fuentes, H., Hernandez-Lerma, O.: Characterizations of overtaking optimality for controlled diffusion processes. Appl. Math. Optim. 57, 349–369 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Khan, M.A., Zaslavski, A.J.: On two classical turnpike results for the Robinson-Solow-Srinivasan (RSS) model. Adv. Math. Econ. 13, 47–97 (2010)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Kolokoltsov, V., Yang, W.: The turnpike theorems for Markov games. Dyn. Games Appl. 2, 294–312 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Leizarowitz, A.: Infinite horizon autonomous systems with unbounded cost. Appl. Math. Opt. 13, 19–43 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Leizarowitz, A.: Tracking nonperiodic trajectories with the overtaking criterion. Appl. Math. Opt. 14, 155–171 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Leizarowitz, A., Mizel, V.J.: One dimensional infinite horizon variational problems arising in continuum mechanics. Arch. Ration. Mech. Anal. 106, 161–194 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Lykina, V., Pickenhain, S., Wagner, M.: Different interpretations of the improper integral objective in an infinite horizon control problem. J. Math. Anal. Appl. 340, 498–510 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Makarov, V.L., Rubinov, A.M.: Mathematical Theory of Economic Dynamics and Equilibria. Springer, New York (1977)CrossRefzbMATHGoogle Scholar
  31. 31.
    Malinowska, A.B., Martins, N., Torres, D.F.M.: Transversality conditions for infinite horizon variational problems on time scales. Optim. Lett. 5, 41–53 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Marcus, M., Zaslavski, A.J.: On a class of second order variational problems with constraints. Isr. J. Math. 111, 1–28 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Marcus, M., Zaslavski, A.J.: The structure of extremals of a class of second order variational problems. Ann. Inst. H. Poincaré Anal. Nonlinéaire 16, 593–629 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Marcus, M., Zaslavski, A.J.: The structure and limiting behavior of locally optimal minimizers. Ann. Inst. H. Poincaré Anal. Nonlinéaire 19, 343–370 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    McKenzie, L.W.: Turnpike theory. Econometrica 44, 841–866 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Mordukhovich, B.S.: Minimax design for a class of distributed parameter systems. Automat. Remote Control 50, 1333–1340 (1990)MathSciNetGoogle Scholar
  37. 37.
    Mordukhovich, B.S.: Optimal control and feedback design of state-constrained parabolic systems in uncertainly conditions. Appl. Anal 90, 1075–1109 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Mordukhovich, B.S., Shvartsman, I.: Optimization and feedback control of constrained parabolic systems under uncertain perturbations. In: Optimal Control, Stabilization and Nonsmooth Analysis. Lecture Notes in Control and Information Science, pp. 121–132. Springer, Berlin (2004)Google Scholar
  39. 39.
    Ocana Anaya, E., Cartigny, P., Loisel, P.: Singular infinite horizon calculus of variations. Applications to fisheries management. J. Nonlinear Convex Anal. 10, 157–176 (2009)zbMATHMathSciNetGoogle Scholar
  40. 40.
    Pickenhain, S., Lykina, V., Wagner, M.: On the lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals in infinite horizon optimal control problems. Control Cybern. 37, 451–468 (2008)zbMATHMathSciNetGoogle Scholar
  41. 41.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)zbMATHGoogle Scholar
  42. 42.
    Rubinov, A.M.: Economic dynamics. J. Sov. Math. 26, 1975–2012 (1984)CrossRefzbMATHGoogle Scholar
  43. 43.
    Samuelson, P.A.: A catenary turnpike theorem involving consumption and the golden rule. Am. Econ. Rev. 55, 486–496 (1965)Google Scholar
  44. 44.
    von Weizsacker, C.C.: Existence of optimal programs of accumulation for an infinite horizon. Rev. Econ. Stud. 32, 85–104 (1965)CrossRefGoogle Scholar
  45. 45.
    Zaslavski, A.J.: Ground states in Frenkel-Kontorova model. Math. USSR Izv. 29, 323–354 (1987)CrossRefGoogle Scholar
  46. 46.
    Zaslavski, A.J.: Optimal programs on infinite horizon 1. SIAM J. Control Optim. 33, 1643–1660 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Zaslavski, A.J.: Optimal programs on infinite horizon 2. SIAM J. Control Optim. 33, 1661–1686 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Zaslavski, A.J.: Turnpike theorem for convex infinite dimensional discrete-time control systems. Convex Anal. 5, 237–248 (1998)zbMATHMathSciNetGoogle Scholar
  49. 49.
    Zaslavski, A.J.: Turnpike theorem for nonautonomous infinite dimensional discrete-time control systems. Optimization 48, 69–92 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Zaslavski, A.J.: A nonintersection property for extremals of variational problems with vector-valued functions. Ann. Inst. H. Poincare Anal. Nonlineare 23, 929–948 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    Zaslavski, A.J.: Turnpike Properties in the Calculus of Variations and Optimal Control. Springer, New York (2006)zbMATHGoogle Scholar
  52. 52.
    Zaslavski, A.J.: Turnpike results for a discrete-time optimal control systems arising in economic dynamics. Nonlinear Anal. 67, 2024–2049 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    Zaslavski, A.J.: A turnpike result for a class of problems of the calculus of variations with extended-valued integrands. J. Convex Anal. 15, 869–890 (2008)zbMATHMathSciNetGoogle Scholar
  54. 54.
    Zaslavski, A.J.: Structure of approximate solutions of variational problems with extended-valued convex integrands. ESAIM Control Optim. Calc. Var. 15, 872–894 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    Zaslavski, A.J.: Two turnpike results for a discrete-time optimal control systems. Nonlinear Anal. 71, 902–909 (2009)CrossRefMathSciNetGoogle Scholar
  56. 56.
    Zaslavski, A.J.: Optimal solutions for a class of infinite horizon variational problems with extended-valued integrands. Optimization 59, 181–197 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    Zaslavski, A.J.: Turnpike properties of approximate solutions for discrete-time control systems. Commun. Math. Anal. 11, 36–45 (2011)zbMATHMathSciNetGoogle Scholar
  58. 58.
    Zaslavski, A.J.: Two turnpike results for a continuous-time optimal control systems. In: Proceedings of an International Conference, Complex Analysis and Dynamical Systems IV: Function Theory and Optimization, vol. 553, pp. 305–317 (2011)MathSciNetGoogle Scholar
  59. 59.
    Zaslavski, A.J.: Structure of Solutions of Variational Problems. SpringerBriefs in Optimization. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
  60. 60.
    Zaslavski, A.J., Leizarowitz, A.: Optimal solutions of linear control systems with nonperiodic integrands. Math. Oper. Res. 22, 726–746 (1997)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of MathematicsThe Technion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations