Skip to main content

Effects of Tropical Successional Forests on Bird Feeding Guilds

  • 1015 Accesses

Part of the Ecological Research Monographs book series (ECOLOGICAL)

Abstract

Previous studies have emphasized the importance of including not only the potential and costs of different land use/land cover alternatives on carbon sequestration but that also there is a need to study the impact of the resulting land cover changes on biodiversity. Tropical forests are undergoing rapid transformation as the result of human activities, which have created more than 600 million ha of secondary vegetation. In particular, tropical dry forests (TDF) are under great pressure caused by conversion to agriculture and other land uses, resulting in a heterogeneous landscape mosaic of secondary forest in different stages of succession or small forest remnants embedded in a matrix of agriculture. Changes in the landscape mosaic affect patterns of animal species abundance and distribution and, consequently, influence community composition. Despite the prevalence of successional forests, few studies have examined their influence on higher trophic levels such as bird communities. The aim of this study was to examine the relative influence of successional age, vegetation structure, and landscape structure on bird guild composition in a TDF region in the Yucatan Peninsula, an important area for migratory birds characterized by high avian endemism. Species composition of different bird feeding guilds was calculated for 274 plots of bird point counts, and vegetation structure was obtained from a vegetation survey in the same plots. We used a land cover thematic map, derived from a supervised classification of SPOT5 satellite imagery, to calculate landscape pattern metrics. Species composition of birds was related to structure of vegetation, landscape metrics of patch types, and principal coordinates of neighbor matrices (PCNM) variables using canonical correspondence analysis (CCA). Overall, bird feeding guilds were influenced by stand age, vegetation structure, and spatial structure of sampled data, and marginally by landscape composition and configuration, but varied in their response and susceptibility to habitat changes. Sound conservation and management should take into account forest specialist species, which require pristine or late secondary forests to persist, and should consider a possible decline in species that may occur in secondary forests but would otherwise use mature forests, as well as declines in species which may feed in a variety of habitats but may not necessarily reproduce in all habitat types.

Keywords

  • Dry tropical forest
  • Feeding guilds
  • Mexico
  • Neotropical birds
  • Secondary forests
  • Yucatan Peninsula

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-4-431-54819-5_11
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-4-431-54819-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2
Fig. 11.3
Fig. 11.4

References

  • Achard F, Eva HD, Stibig HJ, Mayaux P, Gallego J, Richards T, Malingreau JP (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002

    CAS  PubMed  CrossRef  Google Scholar 

  • Arizmendi MC, Rodríguez-Flores C, Soberanes-González C (2010) White-bellied Emerald (Amazilia candida). In: Schulenberg TS (ed) Neotropical birds online. Cornell Lab of Ornithology, Ithaca. http://neotropical.birds.cornell.edu/portal/species/overview?p_p_spp=252571 Accessed 5 Oct 2011

  • Arriaga-Weiss SL, Calmé S, Kampichler C (2008) Bird communities in rainforest fragments: guild responses to habitat variables in Tabasco, Mexico. Biodivers Conserv 17:173–190

    CrossRef  Google Scholar 

  • Bart J, Klosiewski SP (1989) Use of presence/absence to measure changes in avian density. J Wildl Manag 53:847–852

    CrossRef  Google Scholar 

  • Bennet PM, Owens IPF (2002) Evolutionary ecology of birds. Oxford University Press, Oxford

    Google Scholar 

  • Bhagwat SA, Willis KJ, Birks HJB, Wittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol 23:261–267

    PubMed  CrossRef  Google Scholar 

  • Bird Life International (2011) Species factsheet. http://www.birdlife.org/ Accessed 5 Oct 2011

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68

    CrossRef  Google Scholar 

  • Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting spatial structure of ecological data at multiple scales. Ecology 85:1826–1832

    CrossRef  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    CrossRef  Google Scholar 

  • Bowman DMJS, Woinarski JCZ, Sands DPA, Wells A, McShane VJ (1990) Slash and burn agriculture in the wet coastal lowlands of Papua New Guinea: response of birds, butterflies and reptiles. J Biogeogr 17:227–239

    CrossRef  Google Scholar 

  • Brady C, Noske R (2009) Succession in bird and plant communities over a 24-year chronosequence of mine rehabilitation in the Australian monsoon tropics. Restor Ecol 18(6):855–864

    Google Scholar 

  • Bribiesca-Formisano R, Rodríguez-Flores C, Soberanes-González C, Arizmendi MC, Behrstock B (2010) Thicket Tinamou (Crypturellus cinnamomeus). In: Schulenberg TS (ed) Neotropical Birds Online. Cornell Lab of Ornithology, Ithaca. http://neotropical.birds.cornell.edu/portal/species/overview?p_p_spp=59956 Accessed 5 Oct 2011

  • Brown S, Lugo AE (1990) Tropical secondary forests. J Trop Ecol 6:1–32

    CrossRef  Google Scholar 

  • Canaday C (1996) Loss of insectivorous birds along a gradient of human impact in Amazonia. Biol Conserv 77:63–77

    CrossRef  Google Scholar 

  • Colwell RK (2005) EstimateS: statistical estimation of species richness and shared species from samples. Version 7.5. User’s Guide and application. http://purl.oclc.org/estimates. Accessed 7 April 2011

  • Dunn RR (2004) Recovery of faunal communities during tropical forest regeneration. Conserv Biol 18:302–309

    CrossRef  Google Scholar 

  • Dunning JB (1992) CRC handbook of avian body masses. CRC, Boca Raton

    Google Scholar 

  • Dupuy JM, Hernández-Stefanoni JL, Hernández-Juárez RA, Tetetla-Rangel E, Lopez-Martínez JO, Leyequién-Abarca E, Tun-Dzul F, May-Pat F (2011) Patterns and correlates of tropical dry forest structure and composition in a highly replicated chronosequence in Yucatan, Mexico. Biotropica 44:151–162

    CrossRef  Google Scholar 

  • Flores S, Espejel I (1994) Vegetation types of the Yucatan Peninsula. Yucatan Etnoflora. UADY, México. vol 3, 135 p. (in Spanish)

    Google Scholar 

  • Ford HA, Barret GW, Saunders DA, Recher HF (2001) Why have birds in the woodlands of Southern Australia declined? Biol Conserv 97:71–88

    CrossRef  Google Scholar 

  • Furness RW, Greenwood JJD (1993) Birds as monitors of environmental change. Chapman & Hall, London

    CrossRef  Google Scholar 

  • Gaston KJ, Blackburn TM (1995) Birds, body size and the threat of extinction. Philos Trans Biol Sci 347:205–212

    CrossRef  Google Scholar 

  • Gotelli NJ, Entsminger GL (2001) Swap and fill algorithms in null model analysis: rethinking the knight’s tour. Oecologia 129:281–291

    CrossRef  Google Scholar 

  • Graham CH, Blake JG (2001) Influence of patch- and landscape-level factors on birds assemblages in a fragmented tropical landscape. Ecol Appl 116:1709–1721

    CrossRef  Google Scholar 

  • Gray MA, Baldauf SL, Mayhew PJ, Hill JK (2007) The response of avian feeding guilds to tropical forest disturbance. Conserv Biol 21:133–141

    PubMed  CrossRef  Google Scholar 

  • Greenberg R (1990) Ecological plasticity, nephobia, and resource use in birds. Stud Avian Biol 13:431–437

    Google Scholar 

  • Greenberg R (1992) Forest migrants in non-forest habitats on the Yucatan Peninsula. In: Hagan JM III, Johnston DW (eds) Ecology and conservation of neotropical migrant landbirds. Smithsonian Institution Press, Washington, DC, pp 273–286

    Google Scholar 

  • Haas CA (1995) Dispersal and use of corridors by birds in wooded patches on an agricultural landscape. Conserv Biol 9:845–854

    CrossRef  Google Scholar 

  • Hernández-Stefanoni JL, Dupuy JM, Tun-Dzul F, May-Pat F (2011) Effects of landscape structure and stand age on species richness and biomass of a tropical dry forest across spatial scales. Landsc Ecol 26:355–370

    CrossRef  Google Scholar 

  • Holmes RT, Schultz JC, Nothnagle P (1979) Bird predation on forest insects: an exclosure experiment. Science 206:462–463

    CAS  PubMed  CrossRef  Google Scholar 

  • International Tropical Timber Organization (ITTO) (2002) Guidelines for the restoration, management and rehabilitation of degraded and secondary tropical forests. ITTO Policy Development Series No 13. ITTO, Yokohama, Japan, p 84

    Google Scholar 

  • Johns AD (1991) Responses of Amazonian rain forest birds to habitat modification. J Trop Ecol 7:417–437

    CrossRef  Google Scholar 

  • Johnson MD (2000) Effects of shade-tree species and crop structure on the winter arthropod and bird communities in a Jamaican shade coffee plantation. Biotropica 32:133–145

    CrossRef  Google Scholar 

  • Karr JR, Freemark KE (1983) Habitat selection and environmental gradients: dynamics in the ‘stable’ tropics. Ecology 64:1481–1494

    CrossRef  Google Scholar 

  • Laurence WF (2007) Have we overstated the tropical biodiversity crisis? Trends Ecol Evol 22:65–70

    CrossRef  Google Scholar 

  • Lebrija-Trejos E, Bongers F, Pérez-Garciía EA, Meave J (2008) Successional change and resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica 40:422–431

    CrossRef  Google Scholar 

  • Leyequién E, de Boer WF, Cleef A (2007) Influence of body size on coexistence of bird species. Ecol Res 22:735–741

    CrossRef  Google Scholar 

  • Leyequién E, de Boer WF, Toledo VM (2010) Bird community composition in a shaded coffee agro-ecological matrix in Puebla, Mexico: the effects of landscape heterogeneity at multiple spatial scales. Biotropica 42:236–245

    CrossRef  Google Scholar 

  • Mathews S, O’Connor R, Platinga AJ (2002) Quantifying the impacts on biodiversity of policies for carbon sequestration in forests. Ecol Econ 40:71–87

    CrossRef  Google Scholar 

  • May PG (1982) Secondary succession and breeding bird community structure: patterns of resource utilization. Oecologia (Berl) 55:208–216

    CrossRef  Google Scholar 

  • Mayer AL, Cameron GN (2003) Landscape characteristics, spatial extent, and breeding bird diversity in Ohio, USA. Divers Distrib 9:297–311

    CrossRef  Google Scholar 

  • Mazerolle MJ, Villard MA (1999) Patch characteristics and landscape context as predictor of species presence and abundance: a review. Ecoscience 6:117–124

    Google Scholar 

  • Mcgarigal K, Cushman SA, Neel MC (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program. University of Massachusetts, Amherst

    Google Scholar 

  • Miles L, Newton AC, DeFries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE (2006) A global overview of the conservation status of tropical dry forests. J Biogeogr 33:491–505

    CrossRef  Google Scholar 

  • Milesi FA, Marone L, Lopez de Casenave J, Cueto VR, Mezquida ET (2002) Guilds as indicators of environmental conditions: a case study with birds and habitat perturbations in Monte central, Argentina. Ecol Austral 12:149–161

    Google Scholar 

  • Miranda F, Hernández XE (1963) Los tipos de vegetación de México y su clasificación. Bol Soc Bot Méx 28:28–79

    Google Scholar 

  • Nichols JD, Hines JE, Sauer JR, Fallon FW, Fallon JE, Heglund PJ (2000) A double-observer approach for estimating detection probability and abundance from point counts. Auk 117:393–408

    CrossRef  Google Scholar 

  • Pearman PB (2002) The scale of community structure: habitat variation and avian guilds in tropical forest understorey. Ecol Monogr 72:19–39

    CrossRef  Google Scholar 

  • Philpott SM, Arendt WJ, Armbrecht I, Bichier P, Diestch TV, Gordon C, Greenberg R, Perfecto I, Reynoso-Santos R, Soto-Pinto L, Tejeda-Cruz C, Williams-Linera G, Valenzuela J, Zolotoff JM (2008) Biodiversity loss in Latin American coffee landscapes: review of the evidence on ants, birds, and trees. Conserv Biol 22:1093–1105

    PubMed  CrossRef  Google Scholar 

  • Portillo-Quintero CA, Sánchez-Azofeifa GA (2010) Extent and conservation of tropical dry forests in the Americas. Biol Conserv 143:144–155

    CrossRef  Google Scholar 

  • Quesada M, Sanchez-Azofeifa GA, Alvarez-Añorve M, Stoner KE, Avila-Cabadilla L, Calvo-Alvarado J, Castillo A, Espíritu-Santo MM, Fagundes M, Fernandes GW, Gamon J, Lopezaraiza-Mikel M, Lawrence D, Cerdeira-Morellato LP, Powers JS, Neves FS, Rosas-Guerrero V, Sayago R, Sanchez-Montoya G (2009) Succession and management of tropical dry forests in the Americas: review and new perspectives. For Ecol Manag 258:1014–1024

    CrossRef  Google Scholar 

  • Raman TR, Sukumar R (2002) Responses of tropical rainforest birds to abandoned plantations, edges and logged forest in the Western Ghats, India. Anim Conserv 5:201–216

    CrossRef  Google Scholar 

  • Raman TR, Rawat GS, Johnsingh AJT (1998) Recovery of tropical rainforest avifauna in relation to vegetation succession following shifting cultivation in Mizoram, north-east India. J Appl Ecol 35:214–231

    CrossRef  Google Scholar 

  • Rappole JH, Morton ES, Ramos MA (1992) Density, philopatry, and population estimates for songbird migrants wintering in Veracruz. In: Hagan JM, Johnston DW (eds) Ecology and conservation of Neotropical migrant landbirds. Smithsonian Institution Press, Washington, DC, pp 337–344

    Google Scholar 

  • Renjifo LM (2001) Effect of natural and anthropogenic landscape matrices on the abundance of subandean bird species. Ecol Appl 11:14–31

    CrossRef  Google Scholar 

  • Robinson SK, Terborgh J (1997) Bird community dynamics along primary successional gradients of an Amazonian whitewater river. Ornithol Monogr 48:641–672

    CrossRef  Google Scholar 

  • Sanchez-Azofeifa GA, Quesada M, Rodriguez JP, Nassar JM, Stoner KE, Castillo A, Garvin T, Zent EL, Calvo-Alvarado JC, Kalacska MER, Fajardo L, Gamon JA, Cuevas-Reyes P (2005) Research priorities for neotropical dry forests. Biotropica 37:477–485

    Google Scholar 

  • Santamaría-Rivero W (2011) Efectos de la estructura del paisaje sobre la riqueza y abundancia de diferentes gremios de alimentación de aves, al sur de Yucatán, México. Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México, p 96

    Google Scholar 

  • Şekercioğlu CH, Ehrlich PR, Daily GC, Aygen D, Goehring D, Sandi RF (2002) Disappearance of insectivorous birds from tropical forest fragments. Proc Natl Acad Sci USA 99:263–267

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Şekercioğlu CH, Daily GC, Ehrlich PR (2004) Ecosystem consequences of bird declines. Proc Natl Acad Sci USA 101:18042–18047

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Shulenberg TS (2010) Neotropical birds online. Cornell lab of ornithology, Ithaca. http://neotropical.birds.cornell.edu/portal/ Accessed 5 Oct 2011

  • Simberloff D (1994) Habitat fragmentation and population extinction of birds. Ibis 137:S105–S111

    CrossRef  Google Scholar 

  • Smith AL, Salgado-Ortiz J, Robertson RJ (2001) Distribution patterns of migrant and resident birds in successional forests of the Yucatan Peninsula, Mexico. Biotropica 33:153–170

    CrossRef  Google Scholar 

  • Terborgh JW (1985) Habitat selection in Amazonian birds. In: Cody ML (ed) Habitat selection in birds. Academic, Orlando, pp 311–340

    Google Scholar 

  • Thiollay JM (1994) Structure, density and rarity in an Amazonian rain forest bird community. J Trop Ecol 10:449–481

    CrossRef  Google Scholar 

  • Thompson FR III, Probst JR, Raphael MG (1995) Impacts of silviculture: overview and management. In: Martin TE, Finch DM (eds) Ecology and management of Neotropical migratory birds: a synthesis and review of critical issues. Oxford University Press, New York, pp 201–219

    Google Scholar 

  • Volpato G, López EV, Mendoca LB, Bocon R, Bisheimer MB, Serafini PP, Anjios LD (2009) The use of the point count method for bird survey in the Atlantic forest. Zoología 26:74–78

    CrossRef  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    CrossRef  Google Scholar 

  • Willson MF (1974) Avian community organization and habitat structure. Ecology 55:1017–1029

    CrossRef  Google Scholar 

  • Witt GB, Noël MV, Bird MI, Beeton RJS, Menzies NW (2011) Carbon sequestration and biodiversity restoration potential of semi-arid mulga lands of Australia interpreted from long-term grazing exclosures. Agric Ecosyst Environ 141:108–118

    CrossRef  Google Scholar 

  • Wright SJ (2005) Tropical forests in a changing environment. Trends Ecol Evol 20:553–560

    PubMed  CrossRef  Google Scholar 

  • Wright SJ, Muller-Landau HC (2006) The future of tropical forest species. Biotropica 38:287–301

    CrossRef  Google Scholar 

Download references

Acknowledgments

We thank James Callaghan and Kaxil Kiuic A.C. for logistic support. We also thank Rosalina Rodríguez Román, Filogonio May Pat, Fernando Tun Dzul, Víctor Marín Pérez, Ramiro Lara Castillo, Feliciano Pech Pinzón, Evelio Uc Uc, Mario Evelio Uc Uc, and Santos Armín Uc Uc for fieldwork and technical assistance. Funding for this research was provided by CICY, FOMIX-Yucatán (project YUC-2008-C06-108863) and CONACYT (CB-127800)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eurídice Leyequién .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Leyequién, E., Hernández-Stefanoni, J.L., Santamaría-Rivero, W., Dupuy-Rada, J.M., Chable-Santos, J.B. (2014). Effects of Tropical Successional Forests on Bird Feeding Guilds. In: Nakagoshi, N., A. Mabuhay, J. (eds) Designing Low Carbon Societies in Landscapes. Ecological Research Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54819-5_11

Download citation