Skip to main content

Innovation of Vascular Engineering by Mechanomedicine

  • Chapter
  • First Online:
Vascular Engineering

Abstract

This article describes how physical forces contribute to development, physiology, and pathology of vascular cells, focusing on endothelial cells and vascular smooth muscle cells. Based on these basic understandings of the mechanobiology, we discuss mechanomedicine, an application of the mechanobiology to medicine. Basic knowledge about cellular responses, such as cellular signal transduction pathway, gene expression, and cytoskeletal remodeling, to mechanical stimuli is important for understanding the pathology of vascular diseases including atherosclerosis. Introducing the knowledge of the vascular mechanobiology will not only contribute to the development of regenerative medicine using pluripotent stem cells but also provide a way to prevent diseases caused by thromboembolisms, such as myocardial and cerebral infarctions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbey CA, Bayless KJ (2014) Matrix density alters zyxin phosphorylation, which limits peripheral process formation and extension in endothelial cells invading 3D collagen matrices. Matrix Biol 38:36–47

    Article  CAS  PubMed  Google Scholar 

  • Ando J, Yamamoto K (2011) Effects of shear stress and stretch on endothelial function. Antioxid Redox Signal 15:1389–1403

    Article  CAS  PubMed  Google Scholar 

  • Ando J, Yamamoto K (2013) Flow detection and calcium signalling in vascular endothelial cells. Cardiovasc Res 99:260–268

    Article  CAS  PubMed  Google Scholar 

  • Baker AB, Ettenson DS, Jonas M, Nugent MA, Iozzo RV et al (2008) Endothelial cells provide feedback control for vascular remodeling through a mechanosensitive autocrine TGF-beta signaling pathway. Circ Res 103:289–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Best PJ, Hasdai D, Sangiorgi G, Schwartz RS, Holmes DR Jr et al (1999) Apoptosis. Basic concepts and implications in coronary artery disease. Arterioscler Thromb Vasc Biol 19:14–22

    Article  CAS  PubMed  Google Scholar 

  • Bevan JA, Laher I (1991) Pressure and flow-dependent vascular tone. FASEB J 5:2267–2273

    CAS  PubMed  Google Scholar 

  • Chachisvilis M, Zhang YL, Frangos JA (2006) G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci U S A 103:15463–15468

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL et al (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 49:2379–2393

    Article  CAS  PubMed  Google Scholar 

  • Chen YC, Lin RZ, Qi H, Yang Y, Bae H et al (2012) Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater 22:2027–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien S (2003) Molecular and mechanical bases of focal lipid accumulation in arterial wall. Prog Biophys Mol Biol 83:131–151

    Article  CAS  PubMed  Google Scholar 

  • Collins C, Guilluy C, Welch C, O’Brien ET, Hahn K et al (2012) Localized tensional forces on PECAM-1 elicit a global mechanotransduction response via the integrin-RhoA pathway. Curr Biol 22:2087–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins C, Osborne LD, Guilluy C, Chen Z, O’Brien ET 3rd et al (2014) Haemodynamic and extracellular matrix cues regulate the mechanical phenotype and stiffness of aortic endothelial cells. Nat Commun 5:3984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Culver JC, Hoffmann JC, Poche RA, Slater JH, West JL et al (2012) Three-dimensional biomimetic patterning in hydrogels to guide cellular organization. Adv Mater 24:2344–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delaine-Smith RM, Reilly GC (2013) Mesenchymal stem cell responses to mechanical stimuli. Muscles Ligaments Tendons J 2:169–180

    Google Scholar 

  • Dunn J, Qiu H, Kim S, Jjingo D, Hoffman R et al (2014) Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J Clin Invest 124:3187–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egginton S (2011) In vivo shear stress response. Biochem Soc Trans 39:1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Egorova AD, van der Heiden K, Poelmann RE, Hierck BP (2012) Primary cilia as biomechanical sensors in regulating endothelial function. Differentiation 83:S56–S61

    Article  CAS  PubMed  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  • Feaver RE, Gelfand BD, Blackman BR (2013) Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells. Nat Commun 4:1525

    Article  PubMed  PubMed Central  Google Scholar 

  • Galie PA, Nguyen DH, Choi CK, Cohen DM, Janmey PA et al (2014) Fluid shear stress threshold regulates angiogenic sprouting. Proc Natl Acad Sci U S A 111:7968–7973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulino-Debrac D (2013) Mechanotransduction at the basis of endothelial barrier function. Tissue Barriers 1, e24180

    Article  PubMed  PubMed Central  Google Scholar 

  • Han DK, Haudenschild CC, Hong MK, Tinkle BT, Leon MB et al (1995) Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. Am J Pathol 147:267–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heo SJ, Nerurkar NL, Baker BM, Shin JW, Elliott DM et al (2011) Fiber stretch and reorientation modulates mesenchymal stem cell morphology and fibrous gene expression on oriented nanofibrous microenvironments. Ann Biomed Eng 39:2780–2790

    Article  PubMed  PubMed Central  Google Scholar 

  • Ives CL, Eskin SG, McIntire LV (1986) Mechanical effects on endothelial cell morphology: in vitro assessment. In Vitro Cell Dev Biol 22:500–507

    Article  CAS  PubMed  Google Scholar 

  • Jernigan NL, Drummond HA (2005) Vascular ENaC proteins are required for renal myogenic constriction. Am J Physiol Renal Physiol 289:F891–F901

    Article  CAS  PubMed  Google Scholar 

  • Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386

    Article  CAS  PubMed  Google Scholar 

  • Kollum M, Kaiser S, Kinscherf R, Metz J, Kubler W et al (1997) Apoptosis after stent implantation compared with balloon angioplasty in rabbits. Role of macrophages. Arterioscler Thromb Vasc Biol 17:2383–2388

    Article  CAS  PubMed  Google Scholar 

  • Kshitiz, Afzal J, Kim DH, Levchenko A (2014) Concise review: mechanotransduction via p190RhoGAP regulates a switch between cardiomyogenic and endothelial lineages in adult cardiac progenitors. Stem Cells 32:1999–2007

    Article  CAS  PubMed  Google Scholar 

  • Ladoux B, Nicolas A (2012) Physically based principles of cell adhesion mechanosensitivity in tissues. Rep Prog Phys 75:116601

    Article  PubMed  Google Scholar 

  • Li AE, Kamel I, Rando F, Anderson M, Kumbasar B et al (2004) Using MRI to assess aortic wall thickness in the multiethnic study of atherosclerosis: distribution by race, sex, and age. AJR Am J Roentgenol 182:593–597

    Article  PubMed  Google Scholar 

  • Marin T, Gongol B, Chen Z, Woo B, Subramaniam S et al (2013) Mechanosensitive microRNAs-role in endothelial responses to shear stress and redox state. Free Radic Biol Med 64:61–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milkiewicz M, Doyle JL, Fudalewski T, Ispanovic E, Aghasi M et al (2007) HIF-1alpha and HIF-2alpha play a central role in stretch-induced but not shear-stress-induced angiogenesis in rat skeletal muscle. J Physiol 583:753–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra AK, Agrawal DK (2006) In stent restenosis: bane of the stent era. J Clin Pathol 59:232–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin KT, Tranquillo RT (2013) In vitro models of angiogenesis and vasculogenesis in fibrin gel. Exp Cell Res 319:2409–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mowbray AL, Kang DH, Rhee SG, Kang SW, Jo H (2008) Laminar shear stress up-regulates peroxiredoxins (PRX) in endothelial cells: PRX 1 as a mechanosensitive antioxidant. J Biol Chem 283:1622–1627

    Article  CAS  PubMed  Google Scholar 

  • Nagai Y, Yokoi H, Kaihara K, Naruse K (2012) The mechanical stimulation of cells in 3D culture within a self-assembling peptide hydrogel. Biomaterials 33:1044–1051

    Article  CAS  PubMed  Google Scholar 

  • Naruse K, Yamada T, Sokabe M (1998) Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch. Am J Physiol 274:H1532–H1538

    CAS  PubMed  Google Scholar 

  • Perlman H, Maillard L, Krasinski K, Walsh K (1997) Evidence for the rapid onset of apoptosis in medial smooth muscle cells after balloon injury. Circulation 95:981–987

    Article  CAS  PubMed  Google Scholar 

  • Platt MO, Ankeny RF, Shi GP, Weiss D, Vega JD et al (2007) Expression of cathepsin K is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. Am J Physiol Heart Circ Physiol 292:H1479–H1486

    Article  CAS  PubMed  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflugers Arch 440:653–666

    Article  CAS  PubMed  Google Scholar 

  • Prior BM, Yang HT, Terjung RL (2004) What makes vessels grow with exercise training? J Appl Physiol (1985) 97:1119–1128

    Google Scholar 

  • Qiu J, Zheng Y, Hu J, Liao D, Gregersen H et al (2014) Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding. J R Soc Interface 11:20130852

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranade SS, Qiu Z, Woo SH, Hur SS, Murthy SE et al (2014) Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A 111:10347–10352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedding DG, Braun-Dullaeus RC (2006) Caveolin-1: dual role for proliferation of vascular smooth muscle cells. Trends Cardiovasc Med 16:50–55

    Article  CAS  PubMed  Google Scholar 

  • Sedding DG, Seay U, Fink L, Heil M, Kummer W et al (2003) Mechanosensitive p27Kip1 regulation and cell cycle entry in vascular smooth muscle cells. Circulation 108:616–622

    Article  PubMed  Google Scholar 

  • Shimizu N, Yamamoto K, Obi S, Kumagaya S, Masumura T et al (2008) Cyclic strain induces mouse embryonic stem cell differentiation into vascular smooth muscle cells by activating PDGF receptor beta. J Appl Physiol (1985) 104:766–772

    Google Scholar 

  • Son DJ, Kumar S, Takabe W, Kim CW, Ni CW et al (2013) The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat Commun 4:3000

    Article  PubMed  PubMed Central  Google Scholar 

  • Song S, Yamamura A, Yamamura H, Ayon RJ, Smith KA et al (2014) Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. Am J Physiol Cell Physiol 307:C373–C383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone PH, Coskun AU, Kinlay S, Clark ME, Sonka M et al (2003) Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation 108:438–444

    Article  PubMed  Google Scholar 

  • Stone PH, Saito S, Takahashi S, Makita Y, Nakamura S et al (2012) Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION study. Circulation 126:172–181

    Article  PubMed  Google Scholar 

  • Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P (1998) Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest 102:576–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe Y, Saito M, Ueno A, Nakamura M, Takeishi K et al (2000) Mechanical stretch augments PDGF receptor beta expression and protein tyrosine phosphorylation in pulmonary artery tissue and smooth muscle cells. Mol Cell Biochem 215:103–113

    Article  CAS  PubMed  Google Scholar 

  • Teng J, Loukin S, Anishkin A, Kung C (2014) The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements. Pflugers Arch 467:27–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueda A, Koga M, Ikeda M, Kudo S, Tanishita K (2004) Effect of shear stress on microvessel network formation of endothelial cells with in vitro three-dimensional model. Am J Physiol Heart Circ Physiol 287:H994–H1002

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Jiao C, Hanlon HD, Zheng W, Tomanek RJ et al (2004) Mechanical, cellular, and molecular factors interact to modulate circulating endothelial cell progenitors. Am J Physiol Heart Circ Physiol 286:H1985–H1993

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Qian DJ, Zhong WY, Lu JH, Guo XK et al (2014) TGF-beta1 induces the formation of vascular-like structures in embryoid bodies derived from human embryonic stem cells. Exp Ther Med 8:52–58

    PubMed  PubMed Central  Google Scholar 

  • Wen L, Chen Z, Zhang F, Cui X, Sun W et al (2013) Ca2+/calmodulin-dependent protein kinase kinase beta phosphorylation of Sirtuin 1 in endothelium is atheroprotective. Proc Natl Acad Sci U S A 110:E2420–E2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West JL (2011) Protein-patterned hydrogels: customized cell microenvironments. Nat Mater 10:727–729

    Article  CAS  PubMed  Google Scholar 

  • Zaidel-Bar R, Geiger B (2010) The switchable integrin adhesome. J Cell Sci 123:1385–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaragoza C, Marquez S, Saura M (2012) Endothelial mechanosensors of shear stress as regulators of atherogenesis. Curr Opin Lipidol 23:446–452

    Article  CAS  PubMed  Google Scholar 

  • Zhu JH, Chen CL, Flavahan S, Harr J, Su B et al (2011) Cyclic stretch stimulates vascular smooth muscle cell alignment by redox-dependent activation of Notch3. Am J Physiol Heart Circ Physiol 300:H1770–H1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Naruse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Takahashi, K., Naruse, K. (2016). Innovation of Vascular Engineering by Mechanomedicine. In: Tanishita, K., Yamamoto, K. (eds) Vascular Engineering. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54801-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54801-0_15

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54800-3

  • Online ISBN: 978-4-431-54801-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics