Soft Actuators pp 475-487 | Cite as

ATP-Driven Bio-machine



Biomolecular motor systems microtubule/kinesin, actin/myosin are constituent components of biological power unit, which can perform mechanical work by converting chemical energy obtained from hydrolysis of adenosine triphosphate (ATP). The biomolecular motors are organized into highly complex and ordered structures as observed in muscle, stress fiber, contractile ring which exhibit various functions. Performance of these natural machines are much attractive compared to man-made machine. Therefore, to utilize the advantage of these natural machines biological motors have been proposed as the building blocks of ATP-driven bio-machine. In this chapter, different methodologies for designing biomolecular motor based bio-machines through non-equilibrium self-organization process are described.


Active self-organization Biomolecular motor Kinesin Microtubule Non-equilibrium system 


  1. 1.
    Cooper JA (1991) The role of actin polymerization in cell motility. Annu Rev Physiol 53:585–605CrossRefGoogle Scholar
  2. 2.
    Umeda M, Emoto K (1999) Membrane phospholipid dynamics during cytokinesis: regulation of actin filament assembly by redistribution of membrane surface phospholipid. Chem Phys Lipids 101:81–91CrossRefGoogle Scholar
  3. 3.
    Bachand M, Trent AM, Bunker BC, Bachand GD (2005) Physical factors affecting kinesin-based transport of synthetic nanoparticle cargo. J Nanosci Nanotechnol 5:718–722CrossRefGoogle Scholar
  4. 4.
    Mahadevan L, Matsudaira P (2000) Motility powered by supramolecular springs and ratchets. Science 288:95–100CrossRefGoogle Scholar
  5. 5.
    Turner DC, Chang C, Fang K, Brandow SL, Murphy DB (1995) Selective adhesion of functional microtubules to patterned silane surfaces. Biophys J 69:2782–2789CrossRefGoogle Scholar
  6. 6.
    Ramachandran S, Ernst KH, Bachand GD, Vogel V, Hess H (2006) Selective loading of kinesin- powered molecular shuttles with protein cargo and its application to biosensing. Small 2:330–334CrossRefGoogle Scholar
  7. 7.
    Hess H, Clemmens J, Howard J, Vogel V (2002) Surface imaging by self-propelled nanoscale probes. Nano Lett 2:113–116CrossRefGoogle Scholar
  8. 8.
    Hess H, Howard J, Vogel VA (2002) A Piconewton forcemeter assembled from microtubules and kinesins. Nano Lett 2:1113–1115CrossRefGoogle Scholar
  9. 9.
    Martin GL, Heuvel VD, Dekker C (2007) Motor proteins at work for nanotechnology. Science 317:333–336CrossRefGoogle Scholar
  10. 10.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular biology of the cell, 5th edn. Garland Press, New YorkGoogle Scholar
  11. 11.
    Lasker GW (1969) Human biological adaptability. Science 166:1480–1486CrossRefGoogle Scholar
  12. 12.
    Martin P (1997) Wound healing–aiming for perfect skin regeneration. Science 276:75–81CrossRefGoogle Scholar
  13. 13.
    Gutsmann T, Hassenkam T, Cutroni JA, Hansma PK (2005) Sacrificial bonds in polymer brushes from rat tail tendon functioning as nanoscale velcro. Biophys J 89:536–542CrossRefGoogle Scholar
  14. 14.
    Boncheva M, Whitesides GM (2003) Self-healing systems having a design stimulated by the vertebrate spine. Angew Chem Int Ed 42:2644–2647CrossRefGoogle Scholar
  15. 15.
    Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295:1698–1702CrossRefGoogle Scholar
  16. 16.
    White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797CrossRefGoogle Scholar
  17. 17.
    Vale RD, Fletterick RJ (1997) The design plan of kinesin motors. Annu Rev Cell Dev Biol 13:745–777CrossRefGoogle Scholar
  18. 18.
    Howard J, Hudspeth AJ, Vale RD (1989) Movement of microtubules by single kinesin molecules. Nature 342:154–158CrossRefGoogle Scholar
  19. 19.
    Hess H, Clemmens J, Brunner C, Doot R, Luna S, Ernst KH, Vogel V (2005) Molecular self-assembly of “Nanowires” and “Nanospools” using active transport. Nano Lett 5:629–633CrossRefGoogle Scholar
  20. 20.
    Kawamura R, Kakugo A, Osada Y, Gong JP (2010) Selective formation of a linear-shaped bundle of microtubules. Langmuir 26:533–537CrossRefGoogle Scholar
  21. 21.
    Kawamura R, Kakugo A, Osada Y, Gong JP (2010) Microtubule bundle formation driven by ATP: the effect of concentrations of kinesin, streptavidin and microtubules. Nanotechnology 21:145603CrossRefGoogle Scholar
  22. 22.
    Tamura Y, Kawamura R, Shikinaka K, Kakugo A, Osada Y, Gong JP, Mayama H (2011) Dynamic self-organization and polymorphism of microtubule assembly through active interactions with kinesin. Soft Matter 7:5654–5659CrossRefGoogle Scholar
  23. 23.
    Hess H (2006) Self-assembly driven by molecular motors. Soft Matter 2:669–677CrossRefGoogle Scholar
  24. 24.
    Liu H, Spoerke ED, Bachand M, Koch SJ, Bunker BC, Bachand GD (2008) Biomolecular motor-powered self-assembly of dissipative nanocomposite rings. Adv Mater 20:4476–4481CrossRefGoogle Scholar
  25. 25.
    Luria I, Crenshaw J, Downs M, Agarwal A, Seshadri SB, Gonzales J, Idan O, Kamcev J, Katira P, Pandey S, Nitta T, Phillpota SR, Hess H (2011) Microtubule nanospool formation by active self-assembly is not initiated by thermal activation. Soft Matter 7:3108–3115CrossRefGoogle Scholar
  26. 26.
    Idan O, Lam A, Kamcev J, Gonzales J, Agarwal A, Hess H (2012) Nanoscale transport enables active self-assembly of millimeter-scale wires. Nano Lett 12:240–245CrossRefGoogle Scholar
  27. 27.
    Liu H, Bachand GD (2012) Effects of confinement on molecular motor-driven self-assembly of ring structures. Cell Mol Bioeng 6:98–108CrossRefGoogle Scholar
  28. 28.
    Kawamura R, Kakugo A, Shikinaka K, Osada Y, Gong JP (2008) Ring-shaped assembly of microtubules shows preferential counterclockwise motion. Biomacromolecules 9:2277–2282CrossRefGoogle Scholar
  29. 29.
    Amos LA, Klug A (1974) Arrangement of subunits in flagellar microtubules. J Cell Sci 14:523–549Google Scholar
  30. 30.
    Arnal I, Wade RH (1995) How does taxol stabilize microtubules? Curr Biol 5:900–908CrossRefGoogle Scholar
  31. 31.
    Ray S, Meyhöfer E, Milligan RA, Howard J (1993) Kinesin follows the microtubule’s protofilament axis. J Cell Biol 121:1083–1093CrossRefGoogle Scholar
  32. 32.
    Chrétien D, Wade RH (1991) New data on the microtubule surface lattice. Biol Cell 71:161–174CrossRefGoogle Scholar
  33. 33.
    Chretien D, Kenney JM, Fuller SD, Wade RH (1996) Determination of microtubule polarity by cryo-electron microscopy. Structure 4:1031–1040CrossRefGoogle Scholar
  34. 34.
    Chretien D, Fuller SD (2000) Microtubules switch occasionally into unfavorable configurations during elongation. J Mol Biol 298:663–676CrossRefGoogle Scholar
  35. 35.
    Vogan KJ, Tabin C (1999) A new spin on handed asymmetry. Nature 397:295–298CrossRefGoogle Scholar
  36. 36.
    Shibazaki Y, Shimizu M, Kuroda R (2004) Body handedness is directed by genetically determined cytoskeletal dynamics in the early embryo. Curr Biol 14:1462–1467CrossRefGoogle Scholar
  37. 37.
    Thitamadee S, Tuchihara K, Hashimoto T (2002) Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417:193–196CrossRefGoogle Scholar
  38. 38.
    Kakugo A, Kabir AMR, Hosoda N, Shikinaka K, Gong JP (2011) Controlled clockwise–counterclockwise motion of the ring-shaped microtubules assembly. Biomacromolecules 12:3394–3399CrossRefGoogle Scholar
  39. 39.
    Dixit R, Cyr R (2003) Cell damage and reactive oxygen species production induced by fluorescence microscopy: Effect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant J 36:280–290CrossRefGoogle Scholar
  40. 40.
    Sporn LA, Foster TH (1992) Photofrin and light induces microtubule depolymerization in cultured human endothelial cells. Cancer Res 52:3443–3448Google Scholar
  41. 41.
    Juarranz A, Villanueva A, Diaz V, Cañete MJ (1995) Photodynamic effects of the cationic porphyrin, mesotetra(4 N-methylpyridyl)porphine, on microtubules of HeLa cells. J Photochem Photobiol B 27:47–53CrossRefGoogle Scholar
  42. 42.
    Stockert JC, Juarranz A, Villanueva A, Cañete M (1996) Photodynamic damage to HeLa cell microtubules induced by thiazine dyes. Cancer Chemother Pharmacol 39:167–169CrossRefGoogle Scholar
  43. 43.
    Kishino A, Yanagida T (1988) Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334:74–76CrossRefGoogle Scholar
  44. 44.
    Kabir AMR, Inoue D, Kakugo A, Kamei A, Gong JP (2011) Prolongation of the active lifetime of a biomolecular motor for in vitro motility assay by using an inert atmosphere. Langmuir 27:13659–13668CrossRefGoogle Scholar
  45. 45.
    Kabir AMR, Inoue D, Kakugo A, Sada K, Gong JP (2012) Active self-organization of microtubules in an inert chamber system. Polym J 44:607–611CrossRefGoogle Scholar
  46. 46.
    Inoue D, Kabir AMR, Mayama H, Gong JP, Sada K, Kakugo A (2013) Growth of ring-shaped microtubule assemblies through stepwise active self-organisation. Soft Matter 9:7061–7068CrossRefGoogle Scholar
  47. 47.
    Ueda T, Gao QZ, Yamaichi E, Yamagishi C, Akiyama M (1994) Growth of GaAs microcrystal by Ga droplet formation and successive As supply with low-pressure metalorganic chemical vapor deposition. J Cryst Growth 145:707–713CrossRefGoogle Scholar
  48. 48.
    Lvov Y, Decher G, Sukhorukov G (1993) Assembly of thin films by means of successive deposition of alternate layers of DNA and poly(allylamine). Macromolecules 26:5396–5399CrossRefGoogle Scholar
  49. 49.
    Knoll W (1996) Self-assembled microstructures at interfaces. Curr opin Colloid Interface Sci 1:137–143CrossRefGoogle Scholar
  50. 50.
    Kakugo A, Tamura Y, Shikinaka K, Yoshida M, Kawamura R, Furukawa H, Osada Y, Gong JP (2009) Formation of well-oriented microtubules with preferential polarity in a confined space under a temperature gradient. J Am Chem Soc 131:18089–18095CrossRefGoogle Scholar
  51. 51.
    Kabir AMR, Wada S, Inoue D, Tamura Y, Kajihara T, Mayama H, Sada K, Kakugo A, Gong JP (2012) Formation of ring-shaped assembly of microtubules with a narrow size distribution at an air-buffer interface. Soft Matter 8:10863–10867CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Graduate School of Chemical Sciences and EngineeringHokkaido UniversitySapporoJapan
  2. 2.Faculty of ScienceHokkaido UniversitySapporoJapan
  3. 3.Faculty of Advanced Life ScienceHokkaido UniversitySapporoJapan

Personalised recommendations