Advertisement

Decoupling Negotiating Agents to Explore the Space of Negotiation Strategies

  • Tim Baarslag
  • Koen Hindriks
  • Mark Hendrikx
  • Alexander Dirkzwager
  • Catholijn Jonker
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 535)

Abstract

Every year, automated negotiation agents are improving on various domains. However, given a set of negotiation agents, current methods allow to determine which strategy is best in terms of utility, but not so much the reason of success. In order to study the performance of the individual elements of a negotiation strategy, we introduce an architecture that distinguishes three components which together constitute a negotiation strategy: the bidding strategy, the opponent model, and the acceptance condition. Our contribution to the field of bilateral negotiation is threefold: first, we show that existing state of the art agents are compatible with this architecture; second, as an application of our architecture, we systematically explore the space of possible strategies by recombining different strategy components; finally, we briefly review how the BOA architecture has been recently applied to evaluate the performance of strategy components and create novel negotiation strategies that outperform the state of the art.

Keywords

Acceptance condition Automated bilateral negotiation Bidding strategy BOA architecture Component-based Opponent model 

Notes

Acknowledgements

This research is supported by the Dutch Technology Foundation STW, applied science division of NWO and the Technology Program of the Ministry of Economic Affairs. It is part of the Pocket Negotiator project with grant number VICI-project 08075.

References

  1. 1.
    An, B., Lesser, V.: Yushu: a heuristic-based agent for automated negotiating competition. In: Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T. (eds.) New Trends in Agent-based Complex Automated Negotiations, Series of Studies in Computational Intelligence, pp. 145–149. Springer, Berlin (2012)CrossRefGoogle Scholar
  2. 2.
    Ashri, R., Rahwan, I., Luck, M.: Architectures for negotiating agents. In: Proceedings of the 3rd Central and Eastern European conference on Multi-agent Systems, pp. 136–146. Springer, Berlin (2003)Google Scholar
  3. 3.
    Baarslag, T., Hindriks, K.V.: Accepting optimally in automated negotiation with incomplete information. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems (AAMAS ’13), pp. 715–722. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2013)Google Scholar
  4. 4.
    Baarslag, T., Hindriks, K., Jonker, C.M., Kraus, S., Lin, R.: The first automated negotiating agents competition (ANAC 2010). In: Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T. (eds.) New Trends in Agent-based Complex Automated Negotiations, Series of Studies in Computational Intelligence, pp. 113–135. Springer, Berlin (2012)CrossRefGoogle Scholar
  5. 5.
    Baarslag, T., Hendrikx, M., Hindriks, K., Jonker, C.: Measuring the performance of online opponent models in automated bilateral negotiation. In: Thielscher, M., Zhang, D. (eds.) AI 2012: Advances in Artificial Intelligence. Volume 7691 of Lecture Notes in Computer Science, pp. 1–14. Springer, Berlin (2012)Google Scholar
  6. 6.
    Baarslag, T., Fujita, K., Gerding, E.H., Hindriks, K., Ito, T., Jennings, N.R., Jonker, C., Kraus, S., Lin, R., Robu, V., Williams, C.R.: Evaluating practical negotiating agents: results and analysis of the 2011 international competition. Artif. Intell. 198, 73–103 (2013)CrossRefGoogle Scholar
  7. 7.
    Baarslag, T., Hendrikx, M., Hindriks, K., Jonker, C.: Predicting the performance of opponent models in automated negotiation. In: 2013 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2, pp. 59–66 (2013)Google Scholar
  8. 8.
    Baarslag, T., Hindriks, K., Jonker, C.: Acceptance conditions in automated negotiation. In Ito, T., Zhang, M., Robu, V., Matsuo, T., eds.: Complex Automated Negotiations: Theories, Models, and Software Competitions. Volume 435 of Studies in Computational Intelligence, pp. 95–111. Springer, Berlin (2013)Google Scholar
  9. 9.
    Baarslag, T., Hindriks, K., Jonker, C.: A tit for tat negotiation strategy for real-time bilateral negotiations. In: Ito, T., Zhang, M., Robu, V., Matsuo, T. (eds.) Complex Automated Negotiations: Theories, Models, and Software Competitions. Volume 435 of Studies in Computational Intelligence, pp. 229–233. Springer, Berlin (2013)CrossRefGoogle Scholar
  10. 10.
    Bartolini, C., Preist, C., Jennings, N.: A generic software framework for automated negotiation. In: First International Conference on Autonomous Agent and Multi-Agent Systems, Citeseer (2002)Google Scholar
  11. 11.
    Beam, C., Segev, A.: Automated negotiations: a survey of the state of the art. Wirtschaftsinformatik 39(3), 263–268 (1997)Google Scholar
  12. 12.
    Ben Adar, M., Sofy, N., Elimelech, A.: Gahboninho: strategy for balancing pressure and compromise in automated negotiation. In: Ito, T., Zhang, M., Robu, V., Matsuo, T. (eds.) Complex Automated Negotiations: Theories, Models, and Software Competitions. Volume 435 of Studies in Computational Intelligence, pp. 205–208. Springer, Berlin (2013)CrossRefGoogle Scholar
  13. 13.
    Carbonneau, R., Kersten, G., Vahidov, R.: Predicting opponent’s moves in electronic negotiations using neural networks. Expert Syst. Appl. 34(2), 1266–1273 (2008)CrossRefGoogle Scholar
  14. 14.
    Chen, S., Weiss, G.: An efficient and adaptive approach to negotiation in complex environments. In: Proceedings of the 20th European Conference on Artificial Intelligence, pp. 228–233 (2012)Google Scholar
  15. 15.
    Dirkzwager, A., Hendrikx, M., Ruiter, J.: The negotiator: a dynamic strategy for bilateral negotiations with time-based discounts. In: Ito, T., Zhang, M., Robu, V., Matsuo, T. (eds.) Complex Automated Negotiations: Theories, Models, and Software Competitions. Volume 435 of Studies in Computational Intelligence, pp. 217–221. Springer, Berlin (2013)CrossRefGoogle Scholar
  16. 16.
    Dumas, M., Governatori, G., Ter Hofstede, A., Oaks, P.: A formal approach to negotiating agents development. Electron. Commer. Res. Appl. 1(2), 193–207 (2002)CrossRefGoogle Scholar
  17. 17.
    Eymann, T.: Co-evolution of bargaining strategies in a decentralized multi-agent system. In: AAAI Fall 2001 Symposium on Negotiation Methods for Autonomous Cooperative Systems, 126–134 (2001)Google Scholar
  18. 18.
    Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for autonomous agents. Rob. Auton. Syst. 24(3–4), 159–182 (1998). Multi-Agent RationalityGoogle Scholar
  19. 19.
    Fatima, S.S., Wooldridge, M., Jennings, N.R.: Multi-issue negotiation under time constraints. In: AAMAS ’02: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 143–150. ACM, New York (2002)Google Scholar
  20. 20.
    Fishel, R., Bercovitch, M., Gal, Y.: BRAM agent. In: Ito, T., Zhang, M., Robu, V., Matsuo, T. (eds.) Complex Automated Negotiations: Theories, Models, and Software Competitions. Studies in Computational Intelligence, 435 pp. 213–216. Springer, Berlin (2013)Google Scholar
  21. 21.
    Frieder, A., Miller, G.: Value model agent: a novel preference profiler for negotiation with agents. In: Ito, T., Zhang, M., Robu, V., Matsuo, T. (eds.) Complex Automated Negotiations: Theories, Models, and Software Competitions. Volume 435 of Studies in Computational Intelligence, pp. 199–203. Springer, Berlin (2013)CrossRefGoogle Scholar
  22. 22.
    Hao, J., Leung, H.F.: Abines: an adaptive bilateral negotiating strategy over multiple items. In: Proceedings of the The 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology - WI-IAT ’12, vol. 02, pp. 95–102. IEEE Computer Society, Washington, DC (2012)Google Scholar
  23. 23.
    Hindriks, K.V., Tykhonov, D.: Opponent modelling in automated multi-issue negotiation using Bayesian learning. In: Proceedings of the 7th International Joint Conference on Autonomous Agents And Multiagent Systems - AAMAS ’08, vol. 1, pp. 331–338. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2008)Google Scholar
  24. 24.
    Hindriks, K.V., Tykhonov, D.: Towards a quality assessment method for learning preference profiles in negotiation. In: Ketter, W., Poutré, H., Sadeh, N., Shehory, O., Walsh, W. (eds.) Agent-Mediated Electronic Commerce and Trading Agent Design and Analysis. Volume 44 of Lecture Notes in Business Information Processing, pp. 46–59. Springer, Berlin (2010)CrossRefGoogle Scholar
  25. 25.
    Hindriks, K.V., Jonker, C., Tykhonov, D.: Towards an open negotiation architecture for heterogeneous agents. In: Klusch, M., Pechoucek, M., Polleres, A. (eds.) Cooperative Information Agents XII. Volume 5180 of Lecture Notes in Computer Science, pp. 264–279. Springer, Berlin (2008)Google Scholar
  26. 26.
    Ilany, L., Gal, Y.: Algorithm selection in bilateral negotiation (accepted). In: Proceedings of The Sixth International Workshop on Agent-based Complex Automated Negotiations (ACAN 2013) (2013)Google Scholar
  27. 27.
    Jonker, C., Robu, V., Treur, J.: An agent architecture for multi-attribute negotiation using incomplete preference information. Auton. Agent Multi-Agent Syst. 15, 221–252 (2007)CrossRefGoogle Scholar
  28. 28.
    Kawaguchi, S., Fujita, K., Ito, T.: Compromising strategy based on estimated maximum utility for automated negotiation agents competition (ANAC-10). In: Mehrotra, K., Mohan, C., Oh, J., Varshney, P., Ali, M. (eds.) Modern Approaches in Applied Intelligence. Volume 6704 of Lecture Notes in Computer Science, pp. 501–510. Springer, Berlin (2011)Google Scholar
  29. 29.
    Kawaguchi, S., Fujita, K., Ito, T.: Agentk: compromising strategy based on estimated maximum utility for automated negotiating agents. In: Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T. (eds.) New Trends in Agent-Based Complex Automated Negotiations. Volume 383 of Studies in Computational Intelligence, pp. 137–144. Springer, Berlin (2012)CrossRefGoogle Scholar
  30. 30.
    Kawaguchi, S., Fujita, K., Ito, T.: Agentk2: compromising strategy based on estimated maximum utility for automated negotiating agents. In: Ito, T., Zhang, M., Robu, V., Matsuo, T. (eds.) Complex Automated Negotiations: Theories, Models, and Software Competitions. Volume 435 of Studies in Computational Intelligence, pp. 235–241. Springer, Berlin (2013)CrossRefGoogle Scholar
  31. 31.
    Lin, R., Kraus, S., Baarslag, T., Tykhonov, D., Hindriks, K., Jonker, C.M.: Genius: an integrated environment for supporting the design of generic automated negotiators. Comput. Intell. http://dx.doi.org/10.1111/j.1467-8640.2012.00463.x (2012)
  32. 32.
    Matos, N., Sierra, C., Jennings, N.: Determining successful negotiation strategies: an evolutionary approach. In: Proceedings International Conference on Multi Agent Systems, pp. 182–189 (1998)Google Scholar
  33. 33.
    Oshrat, Y., Lin, R., Kraus, S.: Facing the challenge of human-agent negotiations via effective general opponent modeling. In: Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 377–384. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2009)Google Scholar
  34. 34.
    Papaioannou, I., Roussaki, I., Anagnostou, M.: Multi-modal opponent behaviour prognosis in e-negotiations. In: Proceedings of the 11th International Conference on Artificial Neural Networks Conference on Advances in Computational Intelligence, vol. Part I, pp. 113–123. Springer, Berlin (2011)Google Scholar
  35. 35.
    Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50(1), 97–109 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Serban, L.D., Silaghi, G.C., Litan, C.M.: Agent FSEGA - time constrained reasoning model for bilateral multi-issue negotiations. In: Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T. (eds.) New Trends in Agent-based Complex Automated Negotiations, Series of Studies in Computational Intelligence, pp. 159–165. Springer, Berlin (2012)CrossRefGoogle Scholar
  37. 37.
    van Galen Last, N.: Agent smith: opponent model estimation in bilateral multi-issue negotiation. In: Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T. (eds.) New Trends in Agent-based Complex Automated Negotiations, Series of Studies in Computational Intelligence, pp. 167–174. Springer, Berlin (2012)CrossRefGoogle Scholar
  38. 38.
    van Krimpen, T., Looije, D., Hajizadeh, S.: Hardheaded. In: Ito, T., Zhang, M., Robu, V., Matsuo, T. (eds.) Complex Automated Negotiations: Theories, Models, and Software Competitions. Volume 435 of Studies in Computational Intelligence, pp. 223–227. Springer, Berlin (2013)CrossRefGoogle Scholar
  39. 39.
    Williams, C.R., Robu, V., Gerding, E.H., Jennings, N.R.: Iamhaggler: a negotiation agent for complex environments. In: Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T. (eds.) New Trends in Agent-based Complex Automated Negotiations, Series of Studies in Computational Intelligence, pp. 151–158. Springer, Berlin (2012)CrossRefGoogle Scholar
  40. 40.
    Williams, C.R., Robu, V., Gerding, E.H., Jennings, N.R.: Iamhaggler2011: a gaussian process regression based negotiation agent. In: Ito, T., Zhang, M., Robu, V., Matsuo, T. (eds.) Complex Automated Negotiations: Theories, Models, and Software Competitions. Volume 435 of Studies in Computational Intelligence, pp. 209–212. Springer, Berlin (2013)CrossRefGoogle Scholar
  41. 41.
    Zeng, D., Sycara, K.: Bayesian learning in negotiation. Int. J. Hum. Comput. Syst. 48, 125–141 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Tim Baarslag
    • 1
  • Koen Hindriks
    • 1
  • Mark Hendrikx
    • 1
  • Alexander Dirkzwager
    • 1
  • Catholijn Jonker
    • 1
  1. 1.Interactive Intelligence GroupDelft University of TechnologyDelftThe Netherlands

Personalised recommendations