Skip to main content

Position-Dependent Hippo Signaling Controls Cell Fates in Preimplantation Mouse Embryos

  • Chapter
  • First Online:
  • 983 Accesses

Abstract

During preimplantation mouse development, embryos establish two distinct cell lineages by the time of early blastocyst formation: the trophectoderm (TE) and the inner cell mass (ICM). Historically, the importance of cell position within the embryo (inside–outside model) and apico-basal difference, known as cell polarity (polarity model), were suggested for establishment of the two lineages. In this review, I describe the mechanisms of cell fate specification in preimplantation embryos as an example of cell fate control by position-dependent Hippo signaling. Cell–cell adhesion and cell polarity activate and suppress Hippo signaling, respectively, and their combination establishes position-dependent Hippo signaling. Thus, both inside–outside and polarity models are supported. At the molecular level, phosphorylation of the adherens junctions (AJs)-associated Hippo signal component, angiomotin (Amot), activates Lats protein kinase and triggers Hippo signaling. Although this mechanism operates in the AJs of the apolar inner cells, in the outer cells, cell polarity sequesters Amot from basolateral AJs and inactivates the Hippo pathway. Thus, in preimplantation embryos, the cells utilize positional information for proper cell fate control through Hippo signaling. I also discuss the roles of Hippo signaling in regulation of development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17(1):126–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, Brummelkamp TR (2007) YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 17(23):2054–2060

    Article  CAS  PubMed  Google Scholar 

  • Cappello S, Gray MJ, Badouel C, Lange S, Einsiedler M, Srour M, Chitayat D, Hamdan FF, Jenkins ZA, Morgan T, Preitner N, Uster T, Thomas J, Shannon P, Morrison V, Di Donato N, Van Maldergem L, Neuhann T, Newbury-Ecob R, Swinkells M, Terhal P, Wilson LC, Zwijnenburg PJ, Sutherland-Smith AJ, Black MA, Markie D, Michaud JL, Simpson MA, Mansour S, McNeill H, Gotz M, Robertson SP (2013) Mutations in genes encoding the cadherin receptor–ligand pair DCHS1 and FAT4 disrupt cerebral cortical development. Nat Genet 45(11):1300–1308. doi:10.1038/ng.2765

    Article  CAS  PubMed  Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5):643–655

    Article  CAS  PubMed  Google Scholar 

  • Cockburn K, Biechele S, Garner J, Rossant J (2013) The Hippo pathway member Nf2 is required for inner cell mass specification. Curr Biol 23(13):1195–1201. doi:10.1016/j.cub.2013.05.044

    Article  CAS  PubMed  Google Scholar 

  • Dai X, She P, Chi F, Feng Y, Liu H, Jin D, Zhao Y, Guo X, Jiang D, Guan KL, Zhong TP, Zhao B (2013) Phosphorylation of angiomotin by Lats1/2 kinases inhibits F-actin binding, cell migration and angiogenesis. J Biol Chem. doi:10.1074/jbc.M113.518019

    Google Scholar 

  • Dietrich JE, Hiiragi T (2007) Stochastic patterning in the mouse pre-implantation embryo. Development (Camb) 134(23):4219–4231

    Article  CAS  Google Scholar 

  • Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A, Pan D (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130(6):1120–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature (Lond) 474(7350):179–183. doi:10.1038/nature10137

    Article  CAS  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. doi:10.1016/j.cell.2006.06.044

    Article  CAS  PubMed  Google Scholar 

  • Fleming TP (1987) A quantitative analysis of cell allocation to trophectoderm and inner cell mass in the mouse blastocyst. Dev Biol 119(2):520–531

    Article  CAS  PubMed  Google Scholar 

  • Gladden AB, Hebert AM, Schneeberger EE, McClatchey AI (2010) The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex. Dev Cell 19(5):727–739. doi:10.1016/j.devcel.2010.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND, Robson P (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18(4):675–685. doi:10.1016/j.devcel.2010.02.012

    Article  CAS  PubMed  Google Scholar 

  • Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13(4):246–257. doi:10.1038/nrc3458

    Article  CAS  PubMed  Google Scholar 

  • Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF (2011) Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332(6028):458–461. doi:10.1126/science.1199010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiemer SE, Varelas X (2013) Stem cell regulation by the Hippo pathway. Biochim Biophys Acta 1830(2):2323–2334. doi:10.1016/j.bbagen.2012.07.005

    Article  CAS  PubMed  Google Scholar 

  • Hirate Y, Cockburn K, Rossant J, Sasaki H (2012) Tead4 is constitutively nuclear, while nuclear vs. cytoplasmic Yap distribution is regulated in preimplantation mouse embryos. Proc Natl Acad Sci USA 109(50):E3389–E3390. doi:10.1073/pnas.1211810109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirate Y, Hirahara S, Inoue KI, Suzuki A, Alarcon VB, Akimoto K, Hirai T, Hara T, Adachi M, Chida K, Ohno S, Marikawa Y, Nakao K, Shimono A, Sasaki H (2013) Polarity-dependent distribution of angiomotin localizes hippo signaling in preimplantation embryos. Curr Biol. doi:10.1016/j.cub.2013.05.014

    PubMed  Google Scholar 

  • Home P, Saha B, Ray S, Dutta D, Gunewardena S, Yoo B, Pal A, Vivian JL, Larson M, Petroff M, Gallagher PG, Schulz VP, White KL, Golos TG, Behr B, Paul S (2012) Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment. Proc Natl Acad Sci USA 109(19):7362–7367. doi:10.1073/pnas.1201595109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyafil F, Morello D, Babinet C, Jacob F (1980) A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos. Cell 21(3):927–934. doi:10.1016/0092-8674(80)90456-0

    Article  CAS  PubMed  Google Scholar 

  • Johnson MH, Ziomek CA (1981) The foundation of two distinct cell lineages within the mouse morula. Cell 24(1):71–80

    Article  CAS  PubMed  Google Scholar 

  • Kaneko KJ, DePamphilis ML (2013) TEAD4 establishes the energy homeostasis essential for blastocoel formation. Development (Camb) 140(17):3680–3690. doi:10.1242/dev.093799

    Article  CAS  Google Scholar 

  • Kim NG, Koh E, Chen X, Gumbiner BM (2011) E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci USA 108(29):11930–11935. doi:10.1073/pnas.1103345108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Kim TS, Yang TH, Koo BK, Oh SP, Lee KP, Oh HJ, Lee SH, Kong YY, Kim JM, Lim DS (2008) A crucial role of WW45 in developing epithelial tissues in the mouse. EMBO J 27(8):1231–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KP, Lee JH, Kim TS, Kim TH, Park HD, Byun JS, Kim MC, Jeong WI, Calvisi DF, Kim JM, Lim DS (2010) The Hippo–Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Natl Acad Sci USA 107(18):8248–8253. doi:10.1073/pnas.0912203107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung CY, Zernicka-Goetz M (2013) Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and -independent mechanisms. Nat Commun 4:2251. doi:10.1038/ncomms3251

    Article  PubMed  PubMed Central  Google Scholar 

  • Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, Chinnaiyan A, Israel MA, Goldstein LS, Abujarour R, Ding S, Guan KL (2010) The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev 24(11):1106–1118. doi:10.1101/gad.1903310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorthongpanich C, Messerschmidt DM, Chan SW, Hong W, Knowles BB, Solter D (2013) Temporal reduction of LATS kinases in the early preimplantation embryo prevents ICM lineage differentiation. Genes Dev 27(13):1441–1446. doi:10.1101/gad.219618.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDole K, Xiong Y, Iglesias PA, Zheng Y (2011) Lineage mapping the pre-implantation mouse embryo by two-photon microscopy, new insights into the segregation of cell fates. Dev Biol 355(2):239–249. doi:10.1016/j.ydbio.2011.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631–642

    Article  CAS  PubMed  Google Scholar 

  • Morris SA, Teo RT, Li H, Robson P, Glover DM, Zernicka-Goetz M (2010) Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proc Natl Acad Sci USA 107(14):6364–6369. doi:10.1073/pnas.0915063107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95(3):379–391

    Article  CAS  PubMed  Google Scholar 

  • Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N, Makita R, Kurihara H, Morin-Kensicki EM, Nojima H, Rossant J, Nakao K, Niwa H, Sasaki H (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16(3):398–410

    Article  CAS  PubMed  Google Scholar 

  • Nishioka N, Yamamoto S, Kiyonari H, Sato H, Sawada A, Ota M, Nakao K, Sasaki H (2008) Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev 125(3–4):270–283

    Article  CAS  PubMed  Google Scholar 

  • Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, Rossant J (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123(5):917–929

    Article  CAS  PubMed  Google Scholar 

  • Ota M, Sasaki H (2008) Mammalian Tead proteins regulate cell proliferation and contact inhibition as a transcriptional mediator of Hippo signaling. Development (Camb) 135:4059–4069

    Article  CAS  Google Scholar 

  • Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, Deng CX, Brugge JS, Haber DA (2006) Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA 103(33):12405–12410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piotrowska-Nitsche K, Perea-Gomez A, Haraguchi S, Zernicka-Goetz M (2005) Four-cell stage mouse blastomeres have different developmental properties. Development (Camb) 132(3):479–490

    Article  CAS  Google Scholar 

  • Plachta N, Bollenbach T, Pease S, Fraser SE, Pantazis P (2011) Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nat Cell Biol 13(2):117–123. doi:10.1038/ncb2154

    Article  CAS  PubMed  Google Scholar 

  • Ralston A, Cox BJ, Nishioka N, Sasaki H, Chea E, Rugg-Gunn P, Guo G, Robson P, Draper JS, Rossant J (2010) Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development (Camb) 137(3):395–403. doi:10.1242/dev.038828

    Article  CAS  Google Scholar 

  • Ralston A, Rossant J (2008) Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev Biol 313(2):614–629

    Article  CAS  PubMed  Google Scholar 

  • Sawada A, Kiyonari H, Ukita K, Nishioka N, Imuta Y, Sasaki H (2008) Redundant roles of Tead1 and Tead2 in notochord development and the regulation of cell proliferation and survival. Mol Cell Biol 28(10):3177–3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirayoshi Y, Okada TS, Takeichi M (1983) The calcium-dependent cell–cell adhesion system regulates inner cell mass formation and cell surface polarization in early mouse development. Cell 35(3 Pt 2):631–638

    Article  CAS  PubMed  Google Scholar 

  • Skamagki M, Wicher KB, Jedrusik A, Ganguly S, Zernicka-Goetz M (2013) Asymmetric localization of Cdx2 mRNA during the first cell-fate decision in early mouse development. Cell Rep 3(2):442–457. doi:10.1016/j.celrep.2013.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development (Camb) 132(9):2093–2102

    Article  CAS  Google Scholar 

  • Suwinska A, Czolowska R, Ozdzenski W, Tarkowski AK (2008) Blastomeres of the mouse embryo lose totipotency after the fifth cleavage division: expression of Cdx2 and Oct4 and developmental potential of inner and outer blastomeres of 16- and 32-cell embryos. Dev Biol 322(1):133–144. doi:10.1016/j.ydbio.2008.07.019

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Ohno S (2006) The PAR-aPKC system: lessons in polarity. J Cell Sci 119(Pt 6):979–987. doi:10.1242/jcs.02898

    Article  CAS  PubMed  Google Scholar 

  • Tabansky I, Lenarcic A, Draft RW, Loulier K, Keskin DB, Rosains J, Rivera-Feliciano J, Lichtman JW, Livet J, Stern JN, Sanes JR, Eggan K (2013) Developmental bias in cleavage-stage mouse blastomeres. Curr Biol 23(1):21–31. doi:10.1016/j.cub.2012.10.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarkowski AK, Wroblewska J (1967) Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J Embryol Exp Morphol 18(1):155–180

    CAS  PubMed  Google Scholar 

  • Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M (2007) Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature (Lond) 445(7124):214–218. doi:10.1038/nature05458

    Article  CAS  Google Scholar 

  • Varelas X, Wrana JL (2012) Coordinating developmental signaling: novel roles for the Hippo pathway. Trends Cell Biol 22(2):88–96. doi:10.1016/j.tcb.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  • von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD, Pu WT (2012) YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci USA 109(7):2394–2399. doi:10.1073/pnas.1116136109

    Article  Google Scholar 

  • Wada K, Itoga K, Okano T, Yonemura S, Sasaki H (2011) Hippo pathway regulation by cell morphology and stress fibers. Development (Camb) 138(18):3907–3914. doi:10.1242/dev.070987

    Article  CAS  Google Scholar 

  • Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, Richardson JA, Bassel-Duby R, Olson EN (2011) Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal 4(196):ra70. doi:10.1126/scisignal.2002278

    Article  PubMed  PubMed Central  Google Scholar 

  • Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, Depamphilis ML, Buonanno A (2007) Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development (Camb) 134(21):3827–3836

    Article  CAS  Google Scholar 

  • Yamanaka Y, Ralston A, Stephenson RO, Rossant J (2006) Cell and molecular regulation of the mouse blastocyst. Dev Dyn 235(9):2301–2314. doi:10.1002/dvdy.20844

    Article  CAS  PubMed  Google Scholar 

  • Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Genes Dev 27(4):355–371. doi:10.1101/gad.210773.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Bai H, David KK, Dong J, Zheng Y, Cai J, Giovannini M, Liu P, Anders RA, Pan D (2010) The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell 19(1):27–38. doi:10.1016/j.devcel.2010.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q, Guan KL (2011) Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev 25(1):51–63. doi:10.1101/gad.2000111

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21(21):2747–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, Lai ZC, Guan KL (2008) TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22:1962–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Zhang Y, Wu H, Barry E, Yin Y, Lawrence E, Dawson D, Willis JE, Markowitz SD, Camargo FD, Avruch J (2011) Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc Natl Acad Sci USA 108(49):E1312–E1320. doi:10.1073/pnas.1110428108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Sasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Sasaki, H. (2014). Position-Dependent Hippo Signaling Controls Cell Fates in Preimplantation Mouse Embryos. In: Kondoh, H., Kuroiwa, A. (eds) New Principles in Developmental Processes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54634-4_4

Download citation

Publish with us

Policies and ethics