Skip to main content

Context-Dependent Bidirectional Modulation of Wnt/β-Catenin Signaling

  • Chapter
  • First Online:
New Principles in Developmental Processes

Abstract

Wnt/β-catenin signaling is an evolutionarily conserved signaling system that controls cell proliferation, fate specification, differentiation, survival, and death. This signaling system is used repeatedly during embryogenesis and organogenesis and has diverse context-dependent functions in different aspects. Extensive investigations during the past three decades have clarified the core components that mediate Wnt/β-catenin signaling in all cells. However, to understand the mechanisms by which Wnt/β-catenin signaling exerts context-specific roles, it is also important to identify the context-dependent modulators of Wnt/β-catenin signaling. Recently, we and others discovered that Nemo-like kinase (NLK) and dimerization partner 1 (DP1) can regulate Wnt/β-catenin signaling positively and negatively in a cellular context-dependent manner and demonstrated that they play essential roles in embryonic development by fine-tuning cellular response to Wnt/β-catenin signaling. In this chapter, I summarize the function of the context-dependent bidirectional Wnt/β-catenin signaling modulators, with particular focus on NLK and DP1, and discuss the significance of the bidirectional modulation in embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arce L, Pate KT, Waterman ML (2009) Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression. BMC Cancer 9:159–172

    Google Scholar 

  • Arce L, Yokoyama NN, Waterman ML (2006) Diversity of LEF/TCF action in development and disease. Oncogene 25(57):7492–7504

    Article  CAS  PubMed  Google Scholar 

  • Cheyette BN, Waxman JS, Miller JR et al (2002) Dapper, a Dishevelled-associated antagonist of beta-catenin and JNK signaling, is required for notochord formation. Dev Cell 2(4):449–461

    Article  CAS  PubMed  Google Scholar 

  • Clevers H (2006) Wnt/β-catenin signaling in development and disease. Cell 127(3):469–480

    Article  CAS  PubMed  Google Scholar 

  • Davidson G, Mao B, del Barco Barrantes I et al (2002) Kremen proteins interact with Dickkopf1 to regulate anteroposterior CNS patterning. Development (Camb) 129(24):5587–5596

    Article  CAS  Google Scholar 

  • Davidson G, Wu W, Shen J et al (2005) Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature (Lond) 438(7069):867–872

    Article  CAS  Google Scholar 

  • Dorsky RI, Sheldahl LC, Moon RT (2002) A transgenic Lef1/β-catenin-dependent reporter is expressed in spatially restricted domains throughout zebrafish development. Dev Biol 241(2):229–237

    Article  CAS  PubMed  Google Scholar 

  • Gloy J, Hikasa H, Sokol SY (2002) Frodo interacts with Dishevelled to transduce Wnt signals. Nat Cell Biol 4(5):351–357

    CAS  PubMed  Google Scholar 

  • Hassler C, Cruciat CM, Huang YL et al (2007) Kremen is required for neural crest induction in Xenopus and promotes LRP6-mediated Wnt signaling. Development (Camb) 134(23):4255–4263

    Article  CAS  Google Scholar 

  • Herman M (2001) C. elegans POP-1/TCF functions in a canonical Wnt pathway that controls cell migration and in a noncanonical Wnt pathway that controls cell polarity. Development (Camb) 128(4):581–590

    CAS  Google Scholar 

  • Hikasa H, Sokol SY (2004) The involvement of Frodo in TCF-dependent signaling and neural tissue development. Development (Camb) 131(19):4725–4734

    Article  CAS  Google Scholar 

  • Ishitani T, Ninomiya-Tsuji J, Nagai S et al (1999) The TAK1-NLK-MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature (Lond) 399(6738):798–802

    Article  CAS  Google Scholar 

  • Ishitani T, Ninomiya-Tsuji J, Matsumoto K (2003) Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/β-catenin signaling. Mol Cell Biol 23(4):1379–1389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Itasaki N, Jones CM, Mercurio S et al (2003) Wise, a context-dependent activator and inhibitor of Wnt signalling. Development (Camb) 130(18):4295–4305

    Article  CAS  Google Scholar 

  • Kiecker C, Niehrs C (2001) A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development (Camb) 128(21):4189–4201

    Google Scholar 

  • Kim WT, Kim H, Katanaev VL et al (2012) Dual functions of DP1 promote biphasic Wnt-on and Wnt-off states during anteroposterior neural patterning. EMBO J 31(16):3384–3397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lagutin OV, Zhu CC, Kobayashi D, Topczewski J, Shimamura K, Puelles L, Russell HR, McKinnon PJ, Solnica-Krezel L, Oliver G (2003) Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev 17(3):368–379

    Google Scholar 

  • Lin R, Thompson S, Priess JR (1995) pop-1 encodes an HMG box protein required for the specification of a mesoderm precursor in early C. elegans embryos. Cell 83(4):599–609

    Article  CAS  PubMed  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  • Meneghini MD, Ishitani T, Carter JC et al (1999) MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature (Lond) 399(6738):793–797

    Article  CAS  Google Scholar 

  • Nguyen V, Deschet K, Henrich T et al (1999) Morphogenesis of the optic tectum in the medaka (Oryzias latipes): a morphological and molecular study, with special emphasis on cell proliferation. J Comp Neurol 413(3):385–404

    Article  CAS  PubMed  Google Scholar 

  • Niehrs C, Shen J (2010) Regulation of Lrp6 phosphorylation. Cell Mol Life Sci 67(15):2551–2562

    Article  CAS  PubMed  Google Scholar 

  • Ota S, Ishitani S, Shimizu N et al (2012) NLK positively regulates Wnt/β-catenin signalling by phosphorylating LEF1 in neural progenitor cells. EMBO J 31(8):1904–1915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rocheleau CE, Yasuda J, Shin TH et al (1999) WRM-1 activates the LIT-1 protein kinase to transduce anterior/posterior polarity signals in C. elegans. Cell 97(6):717–726

    Article  CAS  PubMed  Google Scholar 

  • Shimizu N, Kawakami K, Ishitani T (2012) Visualization and exploration of Tcf/Lef function using a highly responsive Wnt/β-catenin signaling-reporter transgenic zebrafish. Dev Biol 370(1):71–85

    Article  CAS  PubMed  Google Scholar 

  • Siegfried KR, Kimble J (2002) POP-1 controls axis formation during early gonadogenesis in C. elegans. Development (Camb) 129(2):443–453

    CAS  Google Scholar 

  • Siegfried KR, Kidd AR 3rd, Chesney MA et al (2004) The sys-1 and sys-3 genes cooperate with Wnt signaling to establish the proximal-distal axis of the Caenorhabditis elegans gonad. Genetics 166(1):171–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thorpe CJ, Schlesinger A, Carter JC et al (1997) Wnt signaling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm. Cell 90(4):695–705

    Article  CAS  PubMed  Google Scholar 

  • van den Heuvel S, Dyson NJ (2008) Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Biol 9(9):713–724

    Article  PubMed  Google Scholar 

  • Wang J, Wynshaw-Boris A (2004) The canonical Wnt pathway in early mammalian embryogenesis and stem cell maintenance/differentiation. Curr Opin Genet Dev 14(5):533–539

    Article  CAS  PubMed  Google Scholar 

  • Waxman JS, Hocking AM, Stoick CL et al (2004) Zebrafish Dapper1 and Dapper2 play distinct roles in Wnt-mediated developmental processes. Development (Camb) 131(23):5909–5921

    Article  CAS  Google Scholar 

  • Zeng X, Tamai K, Doble B et al (2005) A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature (Lond) 438(7069):873–877

    Article  CAS  Google Scholar 

  • Zeng X, Huang H, Tamai K et al (2008) Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development (Camb) 135(2):367–375

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Ishitani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Ishitani, T. (2014). Context-Dependent Bidirectional Modulation of Wnt/β-Catenin Signaling. In: Kondoh, H., Kuroiwa, A. (eds) New Principles in Developmental Processes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54634-4_16

Download citation

Publish with us

Policies and ethics