Skip to main content

General Introduction

  • Chapter
  • First Online:
  • 539 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

I described general introduction for importance of metal complexes, well-established unique nature of copper complexes bearing diimines, and the previous research of our group on stimuli-responsive pyrimidine ring rotation in copper complexes. An advantage of our system is that we can extract useful electric responses from a simple multistable molecule. The aim of studies in my Ph.D course on development of new types of emission and photoresponsivity by photofunctionalization of the copper complex system is described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. O’Regan B, Grätzel M (1991) Nature 353:737–740

    Google Scholar 

  2. Hagfeldt A, Grätzel M (2000) Acc Chem Res 33:269–277

    CAS  Google Scholar 

  3. Ardo S, Meyer GJ (2009) Chem Soc Rev 38:115–164

    CAS  Google Scholar 

  4. Hamann TW, Jensen RA, Martinson ABF, Ryswyk HV, Hupp JT (2008) Energy Environ Sci 1:66–78

    CAS  Google Scholar 

  5. Campagna S, Puntoriero F, Nastasi F, Bergamini G, Balzani V (2007) Top Curr Chem 280:117–214

    CAS  Google Scholar 

  6. Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Nature 395:151–154

    CAS  Google Scholar 

  7. Baldo MA, Thompson ME, Forrest SR (2000) Nature 403:750–753

    CAS  Google Scholar 

  8. Evans RC, Douglas P, Winscom CJ (2006) Coord Chem Rev 250:2093–2126

    CAS  Google Scholar 

  9. Qin T, Ding J, Wang L, Baumgarten M, Zhou G, Müllen K (2009) J Am Chem Soc 131:14329–14336

    CAS  Google Scholar 

  10. Meyer TJ (1989) Acc Chem Res 22:163–170

    CAS  Google Scholar 

  11. Concepcion JJ, Jurss JW, Brennaman MK, Hoertz PG, Patrocinio AOT, Murakami Iha NY, Templeton JL, Meyer TJ (2009) Acc Chem Res 42:1954–1965

    CAS  Google Scholar 

  12. Lewis NS, Nocera DG (2006) Proc Natl Sci USA 103:15729–15735

    CAS  Google Scholar 

  13. Lazarides T, McCormick T, Du P, Luo G, Lindley B, Eisenberg R (2009) J Am Chem Soc 131:9192–9194

    CAS  Google Scholar 

  14. Lo KKW, Zhang KY, Leung SK, Tang MC (2008) Angew Chem Int Ed 47:2213–2216

    CAS  Google Scholar 

  15. Glazer EC, Magde D, Tor Y (2007) J Am Chem Soc 129:8544–8551

    CAS  Google Scholar 

  16. DeAmond MK, Carlin CM (1981) Coord Chem Rev 36:325–355

    Google Scholar 

  17. Kubatkin S, Danilov A, Hjort M, Cornil J, Brédas J-L, Stuhr-Hansen N, Hedegård P, Bjørnholm T (2003) Nature 425:698–701

    CAS  Google Scholar 

  18. Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sthena JP, Abruña HD, McEuen PL, Ralph DC (2002) Nature 417:722–725

    CAS  Google Scholar 

  19. Moth-Poulsen K, Bjørnholm T (2009) Nat Nanotechnol 4:551–556

    CAS  Google Scholar 

  20. Joachim C, Gimzewski JK, Aviram A (2000) Nature 408:541–548

    CAS  Google Scholar 

  21. Flood AH, Stoddart JF, Steuerman DW, Heath JR (2004) Science 306:2055–2056

    CAS  Google Scholar 

  22. Green JE, Wook Choi J, Boukai A, Bunimovich Y, Johnston-Halperin E, DeIonno E, Luo Y, Sheriff BA, Xu K, Shik Shin Y, Tseng H-R, Stoddart JF, Heath JR (2007) Nature 445:414–417

    CAS  Google Scholar 

  23. Sakamoto R, Katagiri S, Maeda H, Nishihara H (2013) Coord Chem Rev 257:1493–1506

    CAS  Google Scholar 

  24. Maeda H, Sakamoto R, Nishimori Y, Sendo J, Toshimitsu F, Yamanoi Y, Nishihara H (2011) Chem Commun 47:8644–8646

    CAS  Google Scholar 

  25. Kurita T, Nishimori Y, Toishimitsu F, Muratsugu S, Kume S, Nishihara H (2010) J Am Chem Soc 132:4524–4525

    CAS  Google Scholar 

  26. Nishimori Y, Kanaizuka K, Kurita T, Nagatsu T, Segawa Y, Toshimitsu F, Muratsugu S, Utsuno M, Kume S, Murata M, Nishihara H (2009) Chem Asian J 4:1361–1367

    CAS  Google Scholar 

  27. Utsuno M, Toshimitsu F, Kume S, Nishihara H (2008) Macromol Symp 270:153

    CAS  Google Scholar 

  28. Nishimori Y, Kanaizuka K, Murata M, Nishihara H (2007) Chem Asian J 2:367–376

    CAS  Google Scholar 

  29. Ohba Y, Kanaizuka K, Murata M, Nishihara H (2006) Macromol Symp 235:31

    CAS  Google Scholar 

  30. Kanaizuka K, Murata M, Nishimori Y, Mori I, Nishio K, Masuda H, Nishihara H (2005) Chem Lett 34:534–535

    CAS  Google Scholar 

  31. Simão C, Mas-Torrent M, Crivillers N, Lloveras V, Artés JM, Gorostiza P, Veciana J, Rovira C (2011) Nat Chem 3:359–364

    Google Scholar 

  32. Venkataramani S, Jana U, Dommaschk M, Sönnichsen FD, Tuczek F, Herges R (2011) Science 331:445–448

    CAS  Google Scholar 

  33. Imahori H, Tamaki K, Guldi DM, Luo C, Fujitsuka M, Ito O, Sakata Y, Fukuzumi S (2001) J Am Chem Soc 123:2607–2617

    CAS  Google Scholar 

  34. D’Souza F, Chitta R, Ohkubo K, Tasior M, Subbaiyan NK, Zandler ME, Rogacki MK, Gryko DT, Fukuzumi S (2008) J Am Chem Soc 130:14263–14272

    Google Scholar 

  35. Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T (2002) Nature 420:759–760

    CAS  Google Scholar 

  36. Kobatake S, Takami S, Muto H, Ishikawa T, Irie M (2007) Nature 446:778–781

    CAS  Google Scholar 

  37. Gorostiza P, Isacoff EY (2008) Science 322:395–399

    CAS  Google Scholar 

  38. Beharry AA, Sadovski O, Woolley GA (2011) J Am Chem Soc 133:19684–19687

    CAS  Google Scholar 

  39. Kume S, Nishihara H (2008) Dalton Trans 25:3260–3271

    Google Scholar 

  40. Nishihara H (2005) Coord Chem Rev 249:1468–1475

    CAS  Google Scholar 

  41. Nishihara H (2004) Bull Chem Soc Jpn 77:407–428

    CAS  Google Scholar 

  42. Kurihara M, Hirooka A, Kume S, Sugimoto M, Nishihara H (2002) J Am Chem Soc 124:8800–8801

    CAS  Google Scholar 

  43. Namiki K, Murata M, Kume S, Nishihara H (2011) New J Chem 35:2146–2152

    CAS  Google Scholar 

  44. Namiki K, Sakamoto, A, Murata M, Kume S, Nishihara H (2007) Chem Commun 44:4650–4652

    Google Scholar 

  45. Nagashima S, Murata M, Nishihara H (2006) Angew Chem Int Ed 45:4298–4301

    CAS  Google Scholar 

  46. Kume S, Murata M, Ozeki T, Nishihara H (2005) J Am Chem Soc 127:490–491

    CAS  Google Scholar 

  47. Umeki S, Kume S, Nishihara H (2010) Chem Lett 39:204–205

    CAS  Google Scholar 

  48. Kume S, Kurihara M, Nishihara H (2003) Inorg Chem 42:2194–2196

    CAS  Google Scholar 

  49. Muratsugu S, Kume S, Nishihara H (2008) J Am Chem Soc 130:7204–7205

    CAS  Google Scholar 

  50. Sakamoto R, Murata M, Nishihara H (2006) Angew Chem Int Ed 45:4793–4795

    CAS  Google Scholar 

  51. Hasegawa Y, Takahashi K, Kume S, Nishihara H (2011) Chem Commun 47:6846–6848

    CAS  Google Scholar 

  52. Takahashi K, Hasegawa Y, Sakamoto R, Nishikawa M, Kume S, Nishibori E, Nishihara H (2012) Inorg Chem 51:5188–5198

    CAS  Google Scholar 

  53. Uchida K, Yamanoi Y, Yonezawa T, Nishihara H (2011) J Am Chem Soc 133:9239–9241

    CAS  Google Scholar 

  54. Umeki S, Kume S, Nishihara H (2011) Inorg Chem 50:4925–4933

    CAS  Google Scholar 

  55. Fraysse S, Coudret C, Launay JP (2000) Eur J Inorg Chem 7:1581–1590

    Google Scholar 

  56. Tanaka Y, Inagaki A, Akita M (2007) Chem Commun 11:1169–1171

    Google Scholar 

  57. Muraoka T, Kinbara K, Aida T (2006) Nature 440:512–515

    CAS  Google Scholar 

  58. Ruangsupapichat N, Pollard MM, Harutyunyan SR, Feringa BL (2011) Nat Chem 3:53–60

    CAS  Google Scholar 

  59. Fletcher SP, Dumur F, Pollard MM, Feringa BL (2005) Science 310:80–82

    CAS  Google Scholar 

  60. Hernández JV, Kay ER, Leigh DA (2004) Science 306:1532–1537

    Google Scholar 

  61. Serreli V, Lee C-F, Kay ER, Leigh DA (2007) Nature 445:523–527

    CAS  Google Scholar 

  62. Browne WR, Feringa BL (2006) Nat Nanotechnol 1:25–35

    CAS  Google Scholar 

  63. Balzani V, Credi A, Venturi M (2008) Molecular devices and machines, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  64. Kay ER, Leigh DA, Zerbetto F (2007) Angew Chem Int Ed 46:72–191

    CAS  Google Scholar 

  65. Brouwer AM, Frochot C, Gatti FG, Leigh DA, Mottier L, Paolucci F, Roffia S, Wurpel GWH (2001) Science 291:2124–2128

    CAS  Google Scholar 

  66. Mobian P, Kern J-M, Sauvage J-P (2004) Angew Chem Int Ed 43:2392–2395

    CAS  Google Scholar 

  67. Murakami H, Kawabuchi A, Kotoo K, Kunitake M, Nakashima N (1997) J Am Chem Soc 119:7605–7606

    CAS  Google Scholar 

  68. Armaroli N, Balzani V, Collin J-P, Gavina P, Sauvage J-P, Ventura B (1999) J Am Chem Soc 121:4397–4408

    CAS  Google Scholar 

  69. Poleschak I, Kern JM, Sauvage J-P (2004) Chem Commun 474–476

    Google Scholar 

  70. Collin J-P, Dietrich-Buchecker C, Gaviña P, Jiménez-Molero MC, Sauvage J-P (2001) Acc Chem Res 34:477–487

    CAS  Google Scholar 

  71. Sauvage J-P (1998) Acc Chem Res 31:611–619

    CAS  Google Scholar 

  72. Livoreil A, Sauvage J-P, Armaroli N, Balzani V, Flamigni L, Ventura B (1997) J Am Chem Soc 119:12114–12124

    CAS  Google Scholar 

  73. Sauvage J-P (2010) Bull Jpn Soc Coord Chem 55:3–18

    Google Scholar 

  74. Ruthkosky M, Kelly CA, Castellano FN, Meyer GJ (1998) Coord Chem Rev 171:309–322

    CAS  Google Scholar 

  75. Scaltrito DV, Thompson DW, O’Callaghan JA, Meyer GJ (2000) Coord Chem Rev 208:243–266

    CAS  Google Scholar 

  76. Ruthkosky M, Castellano FN, Meyer GJ (1996) Inorg Chem 35:6406–6412

    CAS  Google Scholar 

  77. Miller MT, Gantzel PK, Karpishin TB (1998) Inorg Chem 37:2285–2290

    CAS  Google Scholar 

  78. Rorabacher DB (2004) Chem Rev 104:651–697

    CAS  Google Scholar 

  79. Le Poul N, Campion M, Douziech B, Rondelez Y, Le Clainche L, Reinaud O, Le Mest Y (2007) J Am Chem Soc 129:8801–8810

    Google Scholar 

  80. Meyer M, Albrecht-Gary AM, Dietrich-Buchecker CO, Sauvage J-P (1999) Inorg Chem 38:2279–2287

    CAS  Google Scholar 

  81. Munakata M, Endicott JF (1984) Inorg Chem 23:3693–3698

    CAS  Google Scholar 

  82. Munakata M, Kitagawa S, Asahara A, Masuda H (1987) Bull Chem Soc Jpn 60:1927–1929

    CAS  Google Scholar 

  83. Federlin P, Kern J-M, Rastegar A, Dietrich-Buchecker C, Marnot PA, Sauvage J-P (1990) New J Chem 14:9–12

    CAS  Google Scholar 

  84. Solomon EI, Szilagyi RK, George SD, Basumallick L (2004) Chem Rev 104:419–458

    CAS  Google Scholar 

  85. Lewis EA, Tolman WB (2004) Chem Rev 104:1047–1076

    CAS  Google Scholar 

  86. Farver O, Pecht I (2011) Coord Chem Rev 255:757–773

    CAS  Google Scholar 

  87. Suzuki M (2007) Acc Chem Res 40:609–617

    CAS  Google Scholar 

  88. Lacour J, Moraleda D (2009) Chem Commun 7073–7089

    Google Scholar 

  89. Hebbe-Viton V, Desvergnes V, Jodry JJ, Dietrich-Buchecker C, Sauvage J-P, Lacour J (2006) Dalton Trans 17: 2058–2065

    Google Scholar 

  90. Desvergnes-Breuil V, Hebbe V, Dietrich-Buchecker C, Sauvage J-P, Lacour J (2003) Inorg Chem 42:255–257

    CAS  Google Scholar 

  91. Hutin M, Nitschke JR (2006) Chem Commun 1724–1726

    Google Scholar 

  92. Riesgo E, Hu Y-Z, Bouvier F, Thummel RP (2001) Inorg Chem 40:2541–2546

    CAS  Google Scholar 

  93. Frei UM, Geier G (1992) Inorg Chem 31:187–190

    CAS  Google Scholar 

  94. Armaroli N, Accorsi G, Cardinali F, Listorti A (2007) Top Curr Chem 280:69–115

    CAS  Google Scholar 

  95. Lavie-Cambot A, Cantuel M, Leydet Y, Jonusauskas G, Bassani DM, McClenaghan ND (2008) Coord Chem Rev 252:2572–2584

    CAS  Google Scholar 

  96. McMillin DR, McNett KM (1998) Chem Rev 98:1201–1219

    Google Scholar 

  97. Bessho T, Constable EC, Grätzel M, Redondo AH, Housecroft CE, Kylberg W, Nazeeruddin MK, Neuburger M, Schaffner S (2008) Chem Commun 32:3717–3719

    Google Scholar 

  98. Lu X, Wei S, Wu C-ML, Li S, Guo W (2011) J Phys Chem C 115:3753–3761

    CAS  Google Scholar 

  99. Everly RM, Ziessel R, Suffert J, McMillin DR (1991) Inorg Chem 30:559–561

    CAS  Google Scholar 

  100. Cunningham CT, Cunningham KLH, Michalec JF, McMillin DR (1999) Inorg Chem 38:4388–4392

    CAS  Google Scholar 

  101. Gothard NA, Mara MW, Huang J, Szarko JM, Rolczynski B, Lockard JV, Chen LX (2012) J Phys Chem A 116:1984–1992

    CAS  Google Scholar 

  102. Gandhi BA, Green O, Burstyn JN (2007) Inorg Chem 46:3816–3825

    CAS  Google Scholar 

  103. Kirchhoff JR, Gamache RE, Blaskie MW, Paggio AD, Lengel RK, McMillin DR (1983) Inorg Chem 22:2380–2384

    CAS  Google Scholar 

  104. Siddique ZA, Yamamoto Y, Ohno T, Nozaki K (2003) Inorg Chem 42:6366–6378

    CAS  Google Scholar 

  105. Miller MT, Gantzel PK, Karpishin TB (1999) J Am Chem Soc 121:4292

    CAS  Google Scholar 

  106. Cuttell DG, Kuang SM, Fanwick PE, McMillin DR, Walton RA (2002) J Am Chem Soc 124:6–7

    CAS  Google Scholar 

  107. Kuang SM, Cuttell DG, McMillin DR, Fanwick PE, Walton RA (2002) Inorg Chem 41:3313–3322

    CAS  Google Scholar 

  108. Yang L, Feng JK, Ren AM, Zhang M, Ma YG, Liu XD (2005) Eur J Inorg Chem 1867–1879

    Google Scholar 

  109. Costa RD, Tordera D, Ortí E, Bolink HJ, Schönle J, Graber S, Housecroft CE, Constable EC, Zampese JA (2011) J Mater Chem 21:16108–16118

    CAS  Google Scholar 

  110. Andrés-Tomé I, Fyson J, Dias FB, Monkman AP, Iacobellis G, Coppo P (2012) Dalton Trans 41:8669–8674

    Google Scholar 

  111. Liu X, Sun W, Zou L, Xie Z, Li X, Lu C, Wang L, Cheng Y (2012) Dalton Trans 41:1312–1319

    CAS  Google Scholar 

  112. Saito K, Arai T, Takahashi N, Tsukuda T, Tsubomura T (2006) Dalton Trans 4444–4448

    Google Scholar 

  113. Zhang Q, Zhou Q, Cheng Y, Wang L, Ma D, Jing X, Wang F (2004) Adv Mater 16:432–436

    CAS  Google Scholar 

  114. Armaroli N, Accorsi G, Holler M, Moudam O, Nierengarten J-F, Zhou Z, Wegh RT, Welter R (2006) Adv Mater 18:1313–1316

    CAS  Google Scholar 

  115. Zhang Q, Zhou Q, Cheng Y, Wang L, Ma D, Jing X, Wang F (2006) Adv Funct Mater 16:1203–1208

    CAS  Google Scholar 

  116. Hsu C-W, Lin C-C, Chung M-W, Chi Y, Lee G-H, Chou P-T, Chang C-H, Chen P-Y (2011) J Am Chem Soc 133:12085–12099

    Google Scholar 

  117. Zhang Q, Ding J, Cheng Y, Wang L, Xie Z, Jing X, Wang F (2007) Adv Funct Mater 17:2983–2990

    CAS  Google Scholar 

  118. Smith CS, Branham CW, Marquardt BJ, Mann KR (2010) J Am Chem Soc 132:14079–14085

    CAS  Google Scholar 

  119. Linfoot CL, Richardson P, Hewat TE, Moudam O, Forde MM, Collins A, White F, Robertson N (2010) Dalton Trans 39:8945–8956

    CAS  Google Scholar 

  120. Del Paggio AA, McMillin DR (1983) Inorg Chem 22:691–692

    Google Scholar 

  121. Rader RA, McMillin DR, Buckner MT, Matthews TG, Casadonte DJ, Lengel RK, Whittaker SB, Darmon LM, Lyttle FE (1981) J Am Chem Soc 103:5906–5912

    CAS  Google Scholar 

  122. Schmittel M, Michel C, Wiegrefe A, Kalsani V (2001) Synthesis 10:1561–1567

    Google Scholar 

  123. Schmittel M, Ganz A (1997) Chem Commun 999–1000

    Google Scholar 

  124. Schmittel M, Michel C, Liu S-X, Schildbach D, Fenske D (2001) Eur J Inorg Chem 5: 1155–1166

    Google Scholar 

  125. Schmittel M, Lüning U, Meder M, Ganz A, Michel C, Herderich M (1997) Heterocycl Commun 3:493–498

    CAS  Google Scholar 

  126. Iwamura M, Watanabe H, Ishii K, Takeuchi S, Tahara T (2011) J Am Chem Soc 133:7728–7736

    CAS  Google Scholar 

  127. Vorontsov II, Graber T, Kovalevsky AY, Novozhilova IV, Gembicky M, Chen Y-S, Coppens P (2009) J Am Chem Soc 131:6566–6573

    CAS  Google Scholar 

  128. McCormick T, Jia W-L, Wang S (2006) Inorg Chem 45:147–155

    CAS  Google Scholar 

  129. Sakaki S, Mizutani H, Kase Y-I, Inokuchi K-J, Arai T, Hamada T (1996) J Chem Soc Dalton Trans 1909–1914

    Google Scholar 

  130. Kovalevsky AY, Gembicky M, Novozhilova IV, Coppens P (2003) Inorg Chem 42:8794–8802

    CAS  Google Scholar 

  131. Cunningham CT, Moore JJ, Cunningham KLH, Fanwick PE, McMillin DR (2000) Inorg Chem 39:3638–3644

    CAS  Google Scholar 

  132. Itoh S, Funahashi S, Koshino N, Takagi HD (2001) Inorg Chim Acta 324:252–265

    CAS  Google Scholar 

  133. Zahn S, Canary JW (2002) J Am Chem Soc 124:9204–9211

    CAS  Google Scholar 

  134. Kuang S-M, Fanwick PE, Walton RA (2002) Inorg Chem 41:405–412

    CAS  Google Scholar 

  135. Kawanishi Y, Kitamura N, Tazuke S (1989) Inorg Chem 28:2968–2975

    CAS  Google Scholar 

  136. Casalboni F, Mulazzani QG, Clark CD, Hoffman MZ, Orizondo PL, Perkovic MW, Rillema DP (1997) Inorg Chem 36:2252–2257

    CAS  Google Scholar 

  137. Rillema DP, Blanton CB, Shaver RJ, Jackman DC, Boldaji M, Bundy S, Worl LA, Meyer TJ (1992) Inorg Chem 31:1600–1606

    CAS  Google Scholar 

  138. Hearns NGR, Fatila EM, Clérac R, Jennings M, Preuss KE (2008) Inorg Chem 47:10330–10341

    CAS  Google Scholar 

  139. Battaglia LP, Corradi AB, Nardelli M, Pelizzi C, Tani MEV (1976) J Chem Soc, Dalton Trans 12:1076–1080

    Google Scholar 

  140. Zhang H, Zhang B, Li Y, Sun W (2009) Inorg Chem 48:3617–3627

    CAS  Google Scholar 

  141. Xue WM, Gosmami N, Eichhorn DM, Orizondo PL, Rillema DP (2000) Inorg Chem 39:4460–4467

    CAS  Google Scholar 

  142. Groen JH, van Leeuwen PWNM, Vrieze K (1998) J Chem Soc Dalton Trans 113–117

    Google Scholar 

  143. Nickita N, Gasser G, Pearson P, Belousoff MJ, Goh LY, Bond AM, Deacon GB, Spiccia L (2008) Inorg Chem 48:68–81

    Google Scholar 

  144. Wald G (1968) Science 162:230–239

    CAS  Google Scholar 

  145. Dau H, Zaharieva I (2009) Acc Chem Res 42:1861–1870

    CAS  Google Scholar 

  146. Vale RD, Milligan RA (2000) Science 288:88–95

    CAS  Google Scholar 

  147. Junge W, Sielaff H, Engelbrecht S (2009) Nature 459:364–370

    CAS  Google Scholar 

  148. Nomoto K, Kume S, Nishihara H (2009) J Am Chem Soc 131:3830–3831

    CAS  Google Scholar 

  149. Kume S, Nomoto K, Kusamoto T, Nishihara H (2009) J Am Chem Soc 131:14198–14199

    CAS  Google Scholar 

  150. Kume S, Nishihara H (2011) Chem Commun 47:415–417

    CAS  Google Scholar 

  151. Kume S, Nishihara H (2011) Dalton Trans 40:2299–2305

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michihiro Nishikawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nishikawa, M. (2014). General Introduction. In: Photofunctionalization of Molecular Switch Based on Pyrimidine Ring Rotation in Copper Complexes. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54625-2_1

Download citation

Publish with us

Policies and ethics