Advertisement

Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS)

  • Yuki Mori
  • Ikuhiro Kida
  • Haruyuki Fukuchi
  • Masaki Fukunaga
  • Yoshichika Yoshioka

Abstract

Magnetic resonance imaging (MRI) has a wide range of applications in medical diagnosis and preclinical research. MRI was invented about 40 years ago, and there are currently estimated to be over 25,000 scanners in the world. In general, contrast agents are not necessary for MRI and the soft tissue contrast of MRI is better than other imaging techniques. The important point is that MRI intensity depends on not only the concentration but also physico-chemical properties of molecules in tissues. In the first part of this chapter, several kinds of MRI techniques are described. Magnetic resonance spectroscopy (MRS) is an application of magnetic resonance. The second part of this chapter is concerned with MRS. This technique provides information in metabolism non-invasively, and obtains spectra from a region of interest two- and three-dimensionally. Some physiological parameters, such as pH and temperature, can be estimated by the spectra. Applications of MRI and MRS are very broad, since many factors affect MRI signals. Functional MRI (fMRI) is an important application used widely in the neurosciences, human sciences, and economics, as well as in medical sciences. The major restriction of MRI is its long scan time. An accelerated technique is described in the last part of the chapter.

Keywords

Magnetic resonance imaging Magnetic resonance spectroscopy fMRI Cell tracking Compressed sensing 

References

  1. Arnold, J.T., Dharmatti, S.S., Packard, M.E.: Chemical effects on nuclear induction signals from organic compounds. J. Chem. Phys. 19, 507 (1951)CrossRefGoogle Scholar
  2. Bandettini, P.A.: Twenty years of functional MRI: the science and the stories. Neuroimage 62, 575–588 (2012)CrossRefGoogle Scholar
  3. Basser, P.J., Mattiello, J., Le Bihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994)CrossRefGoogle Scholar
  4. Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995)CrossRefGoogle Scholar
  5. Bloch, F., Hansen, W.W., Packard, M.: Nuclear induction. Phys. Rev. 69, 127 (1946)CrossRefGoogle Scholar
  6. Brand, A., Richter-Landsberg, C., Leibfritz, D.: Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev. Neurosci. 15, 289–298 (1993)CrossRefGoogle Scholar
  7. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. Damadian, R.: Tumor detection by nuclear magnetic resonance. Science 171, 1151–1153 (1971)CrossRefGoogle Scholar
  9. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. Fox, M.D., Greicius, M.: Clinical applications of resting state functional connectivity. Front. Syst. Neurosci. 4, 19 (2010)Google Scholar
  11. Fox, M.D., Raichle, M.E.: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007)CrossRefGoogle Scholar
  12. Frahm, J., Krüger, G., Merboldt, K.D., Kleinschmidt, A.: Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn. Reson. Med. 35, 143–148 (1996)CrossRefGoogle Scholar
  13. Gill, S.S., Small, R.K., Thomas, D.G., Patel, P., Porteous, R., Van Bruggen, N., Gadian, D.G., Kauppinen, R.A., Williams, S.R.: Brain metabolites as 1H NMR markers of neuronal and glial disorders. NMR Biomed. 2, 196–200 (1989)CrossRefGoogle Scholar
  14. Goldstein, F.B.: The enzymatic synthesis of N-acetyl-L-aspartic acid by subcellular preparations of rat brain. J. Biol. Chem. 244, 4257–4260 (1969)Google Scholar
  15. Greene, J., Haidt, J.: How (and where) does moral judgment work? Trends Cogn. Sci. 6, 517–523 (2002)CrossRefGoogle Scholar
  16. Haacke, E.M., Brown, R.F., Thompson, M., Venkatesan, R.: Magnetic Resonance Imaging: Physical Principles and Sequence Design. Wiley, New York (1999)Google Scholar
  17. Hetherington, H.P., Mason, G.F., Pan, J.W., Ponder, S.L., Vaughan, J.T., Twieg, D.B., Pohost, G.M.: Evaluation of cerebral gray and white matter metabolite differences by spectroscopic imaging at 4.1 T. Magn. Reson. Med. 32, 565–571 (1994)CrossRefGoogle Scholar
  18. Lauterbur, P.C.: Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973)CrossRefGoogle Scholar
  19. Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet, M.: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2), 401–407 (1986)CrossRefGoogle Scholar
  20. Le Bihan, D., Urayama, S., Aso, T., Hanakawa, T., Fukuyama, H.: Direct and fast detection of neuronal activation in the human brain with diffusion MRI. Proc. Natl. Acad. Sci. U. S. A. 103, 8263–8268 (2006)CrossRefGoogle Scholar
  21. Li, B.S., Wang, H., Gonen, O.: Metabolite ratios to assumed stable creatine level may confound the quantification of proton brain MR spectroscopy. Magn. Reson. Imaging 21, 923–928 (2003)CrossRefGoogle Scholar
  22. Lustig, M., Donoho, D., Pauly, J.: Sparse mri: the application of compressed sensing for rapid mr imaging. Magn. Reson. Med. 58, 1182–1195 (2007)CrossRefGoogle Scholar
  23. Magistretti, P.J., Pellerin, L.: Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 1155–1163 (1999)CrossRefGoogle Scholar
  24. Moffett, J.R., Ross, B., Arun, P., Madhavarao, C.N., Namboodiri, A.M.: N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog. Neurobiol. 81, 89–131 (2007)CrossRefGoogle Scholar
  25. Mori, S.: Introduction to Diffusion Tensor Imaging. Elsevier, Amsterdam/Boston (2007)Google Scholar
  26. Mori, S., Barker, P.B.: Diffusion magnetic resonance imaging: its principle and applications. Anat. Rec. 257, 102–109 (1999)CrossRefGoogle Scholar
  27. Mori, Y., Yoshioka, Y.: Visualization of immune cell dynamics in mouse brain with 11.7 T MRI. Proc. Intl. Soc. Magn. Reson. Med. 20, 911 (2012)Google Scholar
  28. Mori, Y., Umeda, M., Fukunaga, M., Ogasawara, K., Yoshioka, Y.: MR contrast in mouse lymph nodes with subcutaneous administration of iron oxide particles: size dependency. Magn. Reson. Med. Sci. 10, 219–227 (2011)CrossRefGoogle Scholar
  29. Moseley, M.E., Cohen, Y., Mintorovitch, J.: Early detection of regional cerebral ischemic injury in cats: evaluation of diffusion and T2-weighted MRI and spectroscopy. Magn. Reson. Med. 14, 330–346 (1990)CrossRefGoogle Scholar
  30. Ogawa, S., Sung, Y.W.: Functional magnetic resonance imaging. Scholarpedia 2(10), 3105 (2007)CrossRefGoogle Scholar
  31. Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. U. S. A. 87, 9868–9872 (1990)CrossRefGoogle Scholar
  32. Pan, J.W., Twieg, D.B., Hetherington, H.P.: Quantitative spectroscopic imaging of the human brain. Magn. Reson. Med. 40, 363–369 (1998)CrossRefGoogle Scholar
  33. Pauling, L., Coryell, C.D.: The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxy hemoglobin. Proc. Natl. Acad. Sci. U. S. A. 22, 210–216 (1936)CrossRefGoogle Scholar
  34. Pouwels, P.J., Frahm, J.: Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magn. Reson. Med. 39, 53–60 (1998)CrossRefGoogle Scholar
  35. Prichard, J., Rothman, D., Novotny, E., Petroff, O., Kuwabara, T., Avison, M., Howseman, A., Hanstock, C., Shulman, R.: Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc. Natl. Acad. Sci. U. S. A. 88, 5829–5831 (1991)CrossRefGoogle Scholar
  36. Purcell, E.M., Torrey, H.C., Pound, R.V.: Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37–38 (1946)CrossRefGoogle Scholar
  37. Rabi, I.I., Zacharias, J.R., Millman, S., Kusch, P.: A new method of measuring magnetic moments. Phys. Rev. 53, 318 (1938)CrossRefGoogle Scholar
  38. Ross, B.D., Blüml, S.: New aspects of brain physiology. NMR Biomed. 9, 279–296 (1996)CrossRefGoogle Scholar
  39. Ross, B., Blüml, S.: Magnetic resonance spectroscopy of the human brain. Anat. Rec. 265, 54–84 (2001)CrossRefGoogle Scholar
  40. Signoretti, S., Marmarou, A., Tavazzi, B., Lazzarino, G., Beaumont, A., Vagnozzi, R.: N-Acetylaspartate reduction as a measure of injury severity and mitochondrial dysfunction following diffuse traumatic brain injury. J. Neurotrauma 18, 977–991 (2001)CrossRefGoogle Scholar
  41. Soares, D.P., Law, M.: Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin. Radiol. 64, 12–21 (2009)CrossRefGoogle Scholar
  42. Srinivasan, R., Sailasuta, N., Hurd, R., Nelson, S., Pelletier, D.: Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 128, 1016–1025 (2005)CrossRefGoogle Scholar
  43. Taylor, D.L., Davies, S.E., Obrenovitch, T.P., Doheny, M.H., Patsalos, P.N., Clark, J.B., Symon, L.: Investigation into the role of N-acetylaspartate in cerebral osmoregulation. J. Neurochem. 65, 275–281 (1995)CrossRefGoogle Scholar
  44. Thulborn, K.R., Warterton, C.J., Matthews, P.M., Radda, G.K.: Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim. Biophys. Acta 714, 265–270 (1982)CrossRefGoogle Scholar
  45. Urenjak, J., Williams, S.R., Gadian, D.G., Noble, M.: Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J. Neurochem. 59, 55–61 (1992)CrossRefGoogle Scholar
  46. Wang, Y., Li, S.J.: Differentiation of metabolic concentrations between gray matter and white matter of human brain by in vivo 1H magnetic resonance spectroscopy. Magn. Reson. Med. 39, 28–33 (1998)CrossRefGoogle Scholar
  47. Zhang, X., Bearer, E.L., Perles-Barbacaru, A.T., Jacobs, R.E.: Increased anatomical detail by in vitro MR microscopy with a modified Golgi impregnation method. Magn. Reson. Med. 63, 1391–1397 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Yuki Mori
    • 1
    • 2
  • Ikuhiro Kida
    • 1
    • 2
  • Haruyuki Fukuchi
    • 1
    • 2
  • Masaki Fukunaga
    • 1
    • 2
  • Yoshichika Yoshioka
    • 1
    • 2
  1. 1.Immunology Frontier Research CenterOsaka UniversitySuitaJapan
  2. 2.Center for Information and Neural NetworksNational Institute of Information and Communications TechnologySuitaJapan

Personalised recommendations