Working Memory as a Basis of Consciousness


‘Working memory’ refers to the capacity-constrained active memory in which information is temporarily maintained and concurrently processed for the use in an ongoing goal-directed activity. The neural mechanisms responsible for consciousness are located in certain brain regions, such as the DLPFC, PPC TPJ and ACC, and these brain regions are coupled with a network that includes the central executive of working memory. In this chapter, we explore the nature of the neural basis of working memory and try to explain the mechanisms of working memory. In order to understand the neural basis of active consciousness, we also investigate how information is controlled by the neural basis of working memory. We use reading span test (RST), which measures the working memory capacity to memorize the target words of sentences during reading, to measure individual differences in working memory capacity.


Working memory Consciousness Capacity Awareness Dual process Central executive system Phonological loop Visuospatial sketchpad Episodic buffer Reading span test (RST) Language comprehension Inhibitory control Focusing attention DLPFC ACC Individual differences Superior parietal lobule Posterior parietal cortex (PPC) Recursive-consciousness 


  1. Atkinson, R.C., Shiffrin, R.M.: Human memory: a proposed system and its control processes. In: Spence, K.W., Spence, J.T. (eds.) The Psychology of Learning and Motivation: Advances in Research and Theory, vol. 2, pp. 89–195. Academic, New York (1968)Google Scholar
  2. Awh, E., Jonides, J., Smith, E.E., Schumacher, E.H., Koeppe, R.A., Katz, S.: Dissociation of storage and rehearsal in verbal working memory: evidence from positron emission tomography. Psychol. Sci. 7(1), 25–31 (1996)CrossRefGoogle Scholar
  3. Baddeley, A.: Working Memory. Oxford University Press, Oxford (1986)Google Scholar
  4. Baddeley, A.: Working memory. Science 255(5044), 556–559 (1992)CrossRefGoogle Scholar
  5. Baddeley, A.: Exploring the central executive. Q. J. Exp. Psychol. 49A(1), 5–28 (1996)MathSciNetCrossRefGoogle Scholar
  6. Baddeley, A.: The episodic buffer: a new component of working memory? Trends Cogn. Sci. 4(11), 417–423 (2000)CrossRefGoogle Scholar
  7. Baddeley, A.: Working memory: theories, models, and controversies. Annu. Rev. Psychol. 63, 1–29 (2012)CrossRefGoogle Scholar
  8. Baddeley, A.D., Hitch, G.J.: Working memory. In: Bower, G.H. (ed.) The Psychology of Learning and Motivation, vol. 8, pp. 47–89. Academic, New York (1974)Google Scholar
  9. Baddeley, A.D., Logie, R.H.: Working memory: the multiple component model. In: Miyake, A., Shah, P. (eds.) Models of Working Memory: Mechanisms of Active Maintenance and Executive Control, pp. 28–61. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  10. Baddeley, A.D., Warrington, E.K.: Amnesia and the distinction between long- and short-term memory. J. Verbal Learn. Verbal Behav. 9(2), 176–189 (1970)CrossRefGoogle Scholar
  11. Baddeley, A., Logie, R., Nimmo-Smith, I., Brereton, N.: Components of fluent reading. J. Mem. Lang. 24(1), 119–131 (1985)CrossRefGoogle Scholar
  12. Barch, D.M., Braver, T.S., Nystrom, L.E., Forman, S.D., Noll, D.C., Cohen, J.D.: Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia 35(10), 1373–1380 (1997)CrossRefGoogle Scholar
  13. Birch, S.L., Garnsey, S.M.: The effect of focus on memory for words in sentence. J. Mem. Lang. 34(2), 232–267 (1995)CrossRefGoogle Scholar
  14. Blutner, R., Sommer, R.: Sentence processing and lexical access: the influence of the focus-identifying task. J. Mem. Lang. 27(4), 359–367 (1988)CrossRefGoogle Scholar
  15. Bolinger, D.: Intonation and Its Parts. Stanford University Press, Stanford (1986)Google Scholar
  16. Braver, T.S., Cohen, J.D., Nystrom, L.E., Jonides, J., Smith, E.E., Noll, D.C.: A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 5(1), 49–62 (1997)CrossRefGoogle Scholar
  17. Braver, T.S., Barch, D.M., Gray, J.R., Molfese, D.L., Snyder, A.: Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cereb. Cortex 11(9), 825–836 (2001)CrossRefGoogle Scholar
  18. Bunge, S.A., Klinberg, T., Jacobsen, R.B., Gabrieli, J.D.E.: A resource model of the neural basis of executive working memory. Proc. Natl. Acad. Sci. U. S. A. 97(7), 3573–3578 (2000)CrossRefGoogle Scholar
  19. Bush, G., Whalen, P.J., Rosen, B.R., Jenike, M.A., Mclnerney, S.C., Rauch, S.L.: The counting stroop: an interference task specialized for functional neuroimaging -validation study with functional MRI. Hum. Brain Mapp. 6(4), 270–282 (1998)CrossRefGoogle Scholar
  20. Bush, G., Luu, P., Posner, M.I.: Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4(6), 215–222 (2000)CrossRefGoogle Scholar
  21. Carpenter, P.A., Just, M.A.: Integrative processes in comprehension. In: LaBerge, D., Samuels, S.J. (eds.) Basic Processes in Reading: Perception and Comprehension, pp. 217–241. Erlbaum, Hillsdale (1977)Google Scholar
  22. Carpenter, P.A., Just, M.A.: The role of working memory in language comprehension. In: Klahr, D., Kotovsky, K. (eds.) Complex Information Processing: The Impact of Herbert A. Simon, pp. 31–68. Erlbaum, Hillsdale (1989)Google Scholar
  23. Carter, C.S., Braver, T.S., Barch, D., Botvinick, M.M., Noll, D., Cohen, J.D.: Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280(5364), 747–749 (1998)CrossRefGoogle Scholar
  24. Cohen, J.D., Peristein, W.M., Braver, T.S., Nystrom, L.E., Noll, D.C., Jonides, J., Smith, E.E.: Temporal dynamics of brain activation during a working memory task. Nature 386(6625), 604–608 (1997)CrossRefGoogle Scholar
  25. Conway, A.R.A., Engle, R.W.: Working memory and retrieval: a resource-dependent inhibition model. J. Exp. Psychol. Gen. 123(4), 354–373 (1994)CrossRefGoogle Scholar
  26. Corbetta, M., Patel, G., Shulman, G.L.: The reorienting system of the human brain: from environment to theory of mind. Neuron 58(3), 306–324 (2008)CrossRefGoogle Scholar
  27. Courtney, S.M., Petit, L., Maisog, J.M., Ungerleider, L.G., Haxby, J.V.: An area specialized for spatial working memory in human frontal cortex. Science 279(5355), 1347–1351 (1998)CrossRefGoogle Scholar
  28. Cowan, N.: An embedded-processes model of working memory. In: Miyake, A., Shah, P. (eds.) Models of Working Memory: Mechanisms of Active Maintenance and Executive Control, pp. 62–101. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  29. Cowan, N.: The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav. Brain Sci. 24(1), 87–185 (2001)CrossRefGoogle Scholar
  30. Culham, J.C., Kanwisher, N.G.: Neuroimaging of cognitive functions in human parietal cortex. Curr. Opin. Neurobiol. 11(2), 157–163 (2001)CrossRefGoogle Scholar
  31. D’Esposito, M., Detre, J.A., Alsop, D.C., Atlas, R.K., Grossman, M.: The neural basis of the central executive system of working memory. Nature 378(6554), 279–281 (1995)CrossRefGoogle Scholar
  32. D’Esposito, M., Aguirre, G.K., Zarahn, E., Ballard, D., Shin, R.K., Lease, J.: Functional MRI studies of spatial and nonspatial working memory. Cogn. Brain Res. 7(1), 1–13 (1998)CrossRefGoogle Scholar
  33. D’Esposito, M., Postle, B.R., Ballard, D., Lease, J.: Maintenance versus manipulation of information held in working memory: an event-related fMRI study. Brain Cogn. 41(1), 66–86 (1999)CrossRefGoogle Scholar
  34. Daneman, M., Carpenter, P.A.: Individual differences in working memory and reading. J. Verbal Learn. Verbal Behav. 19(4), 450–466 (1980)CrossRefGoogle Scholar
  35. Daneman, M., Carpenter, P.A.: Individual differences in integrating information between and within sentences. J. Exp. Psychol. Learn. Mem. Cogn. 9(4), 561–583 (1983)CrossRefGoogle Scholar
  36. Daneman, M., Merikle, P.M.: Working memory and language comprehension: a meta-analysis. Psychon. Bull. Rev. 3(4), 422–433 (1996)CrossRefGoogle Scholar
  37. De Beni, R., Palladino, P., Pazzaglia, F., Cornoldi, C.: Increases in intrusion errors and working memory deficit of poor comprehenders. Q. J. Exp. Psychol. 51A(2), 305–320 (1998)Google Scholar
  38. Diwadkar, V.A., Carpenter, P.A., Just, M.A.: Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI. Neuroimage 12(1), 85–99 (2000)CrossRefGoogle Scholar
  39. Engle, R.W., Conway, A.R.A., Tuholski, S.W., Shisler, R.J.: A resource account of inhibition. Psychol. Sci. 6(2), 122–125 (1995)CrossRefGoogle Scholar
  40. Engle, R.W., Tuholski, S., Laughlin, J.E., Conway, A.R.A.: Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. J. Exp. Psychol. Gen. 128(3), 309–331 (1999)CrossRefGoogle Scholar
  41. Jonides, J., Smith, E.E., Koeppe, R.A., Awh, E., Minoshima, S., Mintun, M.A.: Spatial working memory in humans as revealed by PET. Nature 363(6430), 623–625 (1993)CrossRefGoogle Scholar
  42. Just, M.A., Carpenter, P.A.: A capacity theory of comprehension: individual differences in working memory. Psychol. Rev. 99(1), 122–149 (1992)CrossRefGoogle Scholar
  43. Just, M.A., Carpenter, P.A., Keller, T.A.: The capacity theory of comprehension: new frontiers of evidence and arguments. Psychol. Rev. 103(4), 773–780 (1996)CrossRefGoogle Scholar
  44. Kane, M.J., Engle, R.W.: Working-memory capacity and the control of attention: the contributions of goal neglect, response competition, and task set to stroop interference. J. Exp. Psychol. Gen. 132(1), 47–70 (2003)CrossRefGoogle Scholar
  45. Kintsch, W., Van Dijk, T.A.: Toward a model of text comprehension and production. Psychol. Rev. 85(5), 363–394 (1978)CrossRefGoogle Scholar
  46. Kondo, H., Morishita, M., Osaka, N., Osaka, M., Fukuyama, H., Shibasaki, H.: Functional roles of the cingulo-frontal network in performance on working memory. Neuroimage 21(1), 2–14 (2004a)CrossRefGoogle Scholar
  47. Kondo, H., Osaka, N., Osaka, M.: Cooperation of the anterior cingulated cortex and dorsolateral prefrontal cortex for attention shifting. Neuroimage 23(2), 670–679 (2004b)CrossRefGoogle Scholar
  48. Kuno, S.: Discourse and Grammar. Taishukan-Shoten, Tokyo (1978) (in Japanese)Google Scholar
  49. La Pointe, L.B., Engle, R.W.: Simple and complex word spans as measures of working memory capacity. J. Exp. Psychol. Learn. Mem. Cogn. 16(6), 1118–1133 (1990)CrossRefGoogle Scholar
  50. Linden, D.E.: The working memory networks of the human brain. Neuroscientist 13(3), 257–267 (2007)CrossRefGoogle Scholar
  51. MacDonald III, A.W., Cohen, J.D., Stenger, V.A., Carter, C.S.: Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288(5472), 1835–1838 (2000)CrossRefGoogle Scholar
  52. Masson, M.E., Miller, J.A.: Working memory and individual differences in comprehension and memory of text. J. Educ. Psychol. 75(2), 314–318 (1983)CrossRefGoogle Scholar
  53. May, C.P., Hasher, L., Kane, M.J.: The role of interference in memory span. Mem. Cognit. 27(5), 759–767 (1999)CrossRefGoogle Scholar
  54. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63(2), 81–97 (1956)CrossRefGoogle Scholar
  55. Norman, D.A., Shallice, T.: Attention to action: willed and automatic control of behavior. In: Davidson, R.J., Schwartz, G.E., Shapiro, D. (eds.) Consciousness and Self-Regulation: Advances in Research and Theory, vol. 4, pp. 1–18. Plenum Press, New York (1986)CrossRefGoogle Scholar
  56. Nyberg, L.: Mapping episodic memory. Behav. Brain Res. 90(2), 107–114 (1998)CrossRefGoogle Scholar
  57. Osaka, N.: In the theatre of working memory of the brain. J. Conscious. Stud. 4(4), 332–334 (1997)Google Scholar
  58. Osaka, N.: Working memory and consciousness. In: Osaka, N. (ed.) Brain and Working Memory, pp. 1–18. Kyoto University Press, Kyoto (2000) (in Japanese)Google Scholar
  59. Osaka, M.: Working Memory: The Sketch Pad of the Brain. Shinyosha, Tokyo (2002). (in Japanese)Google Scholar
  60. Osaka, N.: Understanding Consciousness in the Brain. Iwanami Publishers, Tokyo, (1998) (in Japanese)Google Scholar
  61. Osaka, M., Nishizaki, Y.: How working memory works in the central executive. In: Osaka, N. (ed.) Brain and Working Memory, pp. 203–223. Kyoto University Press, Kyoto (2000) (in Japanese)Google Scholar
  62. Osaka, M., Osaka, N.: Language-independent working memory as measured by Japanese and English reading span tests. Bull. Psychon. Soc. 30(4), 287–289 (1992)CrossRefGoogle Scholar
  63. Osaka, M., Osaka, N.: Working memory capacity related to reading: measurement with the Japanese version of reading span test. Jpn. J. Psychol. 65(5), 339–345 (1994) (in Japanese with an English summary)CrossRefGoogle Scholar
  64. Osaka, M., Nishizaki, Y., Komori, M., Osaka, N.: Effect of focus on verbal working memory: critical role of the focus word in reading. Mem. Cognit. 30(4), 562–571 (2002)CrossRefGoogle Scholar
  65. Osaka, M., Osaka, N., Kondo, H., Morishita, M., Fukuyama, H., Aso, T., Shibasaki, H.: The neural basis of individual differences in working memory capacity: an fMRI study. Neuroimage 18(3), 789–797 (2003)CrossRefGoogle Scholar
  66. Osaka, N., Osaka, M., Kondo, H., Morishita, M., Fukuyama, H., Shibasaki, H.: The neural basis of executive function in working memory: an fMRI study based on individual differences. Neuroimage 21(2), 623–631 (2004)CrossRefGoogle Scholar
  67. Osaka, M., Komori, M., Morishita, M., Osaka, N.: Neural bases of focusing attention in working memory. Cogn. Affect. Behav. Neurosci. 7(2), 130–139 (2007)CrossRefGoogle Scholar
  68. Owen, A.M., Evans, A.C., Petrides, M.: Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: a positron emission tomography study. Cereb. Cortex 6(1), 31–38 (1996)CrossRefGoogle Scholar
  69. Owen, A.M., Stern, C.E., Look, R.B., Tracey, I., Rosen, B.R., Petrides, M.: Functional organization of spatial and non-spatial working memory processing within the human lateral frontal cortex. Proc. Natl. Acad. Sci. U. S. A. 95(13), 7721–7726 (1998)CrossRefGoogle Scholar
  70. Paulesu, E., Frith, C.D., Frackowiak, R.S.: The neural correlates of the verbal component of working memory. Nature 362(6418), 342–345 (1993)CrossRefGoogle Scholar
  71. Perfetti, C.A., Goldman, S.R.: Discource memory and reading comprehension skill. J. Verbal Learn. Verbal Behav. 15(1), 33–42 (1976)CrossRefGoogle Scholar
  72. Rypma, B., Prabhakaran, V., Desmond, J.E., Glover, G.H., Gablieli, J.D.E.: Load-dependent roles of frontal brain regions in the maintenance of working memory. Neuroimage 9(2), 216–226 (1999)CrossRefGoogle Scholar
  73. Shallice, T., Warrington, E.K.: Independent functioning of verbal memory stores: A neuropsychological study. Q. J. Exp. Psychol. 22(2), 261–273 (1970)CrossRefGoogle Scholar
  74. Shallice, T., Fletcher, P., Frith, C.D., Grasby, P., Frackowiak, R.S., Dolan, R.J.: Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature 368(6472), 633–635 (1994)CrossRefGoogle Scholar
  75. Smith, E.E., Jonides, J.: Storage and executive processes in the frontal lobes. Science 283(5408), 1657–1661 (1999)CrossRefGoogle Scholar
  76. Smith, E.E., Jonides, J., Koeppe, R.A.: Dissociating verbal and nonverbal working memory using PET. Cereb. Cortex 6(1), 11–20 (1996)CrossRefGoogle Scholar
  77. Smith, E.E., Geva, A., Jonides, J., Miller, A., Reuter-Lorenz, P., Koeppe, R.A.: The neural basis of task-switching in working memory: effects of performance and aging. Proc. Natl. Acad. Sci. U. S. A. 98(4), 2095–2100 (2001)CrossRefGoogle Scholar
  78. Stroop, J.R.: Studies of interference in serial verval reactions. J. Exp. Psychol. 18(6), 643–662 (1935)CrossRefGoogle Scholar
  79. Towse, J.N., Hitch, G.J., Hutton, U.: A reevaluation of working memory capacity in children. J. Mem. Lang. 39(2), 195–217 (1998)CrossRefGoogle Scholar
  80. Towse, J.N., Hitch, G.J., Hutton, U.: On the interpretation of working memory span in adults. Mem. Cognit. 28(3), 341–348 (2000)CrossRefGoogle Scholar
  81. Tulving, E., Kapur, S., Markowitsch, H.J., Craik, F.I., Habib, R., Houle, S.: Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition. Proc. Natl. Acad. Sci. U. S. A. 91(6), 2012–2015 (1994)CrossRefGoogle Scholar
  82. Turner, M.L., Engle, R.W.: Is working memory capacity task dependent? J. Mem. Lang. 28(2), 127–154 (1989)CrossRefGoogle Scholar
  83. Vogt, B.A., Finch, D.M., Olson, C.R.: Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb. Cortex 2(6), 435–443 (1992)Google Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Division of Cognitive Neuroscience Robotics, Institute for Academic InitiativesOsaka UniversitySuitaJapan

Personalised recommendations