Mechanism for Cognitive Development

  • Yukie Nagai


This chapter describes computational approaches to a new understanding of the mechanisms of cognitive development. There are two important factors for proper development: inherent mechanisms for infants to bootstrap their development and environmental scaffolding to facilitate development. After describing our key ideas, three case studies in cognitive developmental robotics are presented: a computational model for the emergence of the mirror neuron system, a developmental mechanism for joint attention, and an analysis of the dynamical information flow in infant-caregiver interaction. Lastly, the potential of our models to reveal the mechanisms of developmental disorders are discussed.


Cognitive developmental robotics (CDR) Contingency/contingency learning Self and others Caregivers’ scaffolding/Caregiver’s scaffolding Zone of proximal development (ZPD) Mirror neuron system (MNS) Joint attention Social contingency Information flow Autism spectrum disorder (ASD) Prediction error 


  1. Asada, M., MacDorman, K.F., Ishiguro, H., Kuniyoshi, Y.: Cognitive developmental robotics as a new paradigm for the design of humanoid robots. Robot. Auton. Syst. 37(2–3), 185–193 (2001)CrossRefMATHGoogle Scholar
  2. Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T., Yoshikawa, Y., Ogino, M., Yoshida, C.: Cognitive developmental robotics: a survey. IEEE Trans. Auton. Ment. Dev. 1(1), 12–34 (2009)CrossRefGoogle Scholar
  3. Ayaya, S., Kumagaya, S.: Hattatsu Shougai Tojisha Kenkyu (in Japanese). Igaku-shoin, Tokyo (2008)Google Scholar
  4. Ayaya, S., Kawano, T., Mukaiyachi, I., Tojisha-Kenkyukai, N., Ishihara, K., Ikeda, T., Kumagaya, S.: Tojisha Kenkyu no Kenkyu (in Japanese). Igaku-shoin, Tokyo (2013)Google Scholar
  5. Baron-Cohen, S.: Mindblindness. MIT, Cambridge (1995)Google Scholar
  6. Berk, L.E., Winsler, A.: Scaffolding Children’s Learning: Vygotsky and Early Childhood Education. National Association for the Education of Young Children, Washington, DC (1995)Google Scholar
  7. Blakemore, S.-J., Frith, C.D., Wolpert, D.M.: Spatio-temporal prediction modulates the perception of self-produced stimuli. J. Cogn. Neurosci. 11(5), 551–559 (1999)CrossRefGoogle Scholar
  8. Brand, R.J., Baldwin, D.A., Ashburn, L.A.: Evidence for ‘motionese’: modifications in mothers’ infant-directed action. Dev. Sci. 5(1), 72–83 (2002)CrossRefGoogle Scholar
  9. Bremner, J.G.: Infancy. Blackwell, Oxford/Cambridge (1994)Google Scholar
  10. Brooks, R., Meltzoff, A.N.: The development of gaze following and its relation to language. Dev. Sci. 8(6), 535–543 (2005)CrossRefGoogle Scholar
  11. Butterworth, G., Harris, M.: Principles of Developmental Psychology. Lawrence Erlbaum Associates, Hove/Hillsdale (1994)Google Scholar
  12. Butterworth, G., Jarrett, N.: What minds have in common is space: spatial mechanisms serving joint visual attention in infancy. Br. J. Dev. Psychol. 9, 55–72 (1991)CrossRefGoogle Scholar
  13. Catmur, C., Walsh, V., Heyes, C.: Associative sequence learning: the role of experience in the development of imitation and the mirror system. Philos. Trans. R. Soc. B Biol. Sci. 364(1528), 2369–2380 (2009)CrossRefGoogle Scholar
  14. Cohn, J.E., Tronick, E.Z.: Mother-infant face-to-face interaction: influence is bidirectional and unrelated to periodic cycles in either Partner’s behavior. Dev. Psychol. 24(3), 386–392 (1988)CrossRefGoogle Scholar
  15. Csibra, G., Gergely, G.: Natural pedagogy. Trends Cogn. Sci. 13(4), 148–153 (2009)CrossRefGoogle Scholar
  16. Fernald, A., Simon, T.: Expanded intonation contours in mothers’ speech to newborns. Dev. Psychol. 20(1), 104–113 (1984)CrossRefGoogle Scholar
  17. Frank, M.C., Vul, E., Johnson, S.P.: Development of infants’ attention to faces during the first year. Cognition 110(2), 160–170 (2009)CrossRefGoogle Scholar
  18. Frith, U., Happé, F.: Autism: beyond “theory of mind”. Cognition 50, 115–132 (1994)CrossRefGoogle Scholar
  19. Gallese, V., Fadiga, L., Fogassi, L., Rizzolatti, G.: Action recognition in the premotor cortex. Brain 119, 593–609 (1996)CrossRefGoogle Scholar
  20. Gergely, G., Egyed, K., Király, I.: On pedagogy. Dev. Sci. 10(1), 139–146 (2007)CrossRefGoogle Scholar
  21. Golinkoff, R.M., Hirsh-Pasek, K.: BabyWordsmith: from associationist to social sophisticate. Curr. Dir. Psychol. Sci. 15(1), 30–33 (2006)CrossRefGoogle Scholar
  22. Happé, F., Frith, U.: The weak coherence account: detail-focused cognitive style in Autism spectrum disorders. J. Autism Dev. Disord. 36(1), 5–25 (2006)CrossRefGoogle Scholar
  23. Heyes, C.: Where do mirror neurons come from? Neurosci. Biobehav. Rev. 34(4), 575–583 (2010)CrossRefGoogle Scholar
  24. Kawai, Y., Nagai, Y., Asada, M.: Perceptual development triggered by its self-organization in cognitive learning. In: Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, pp. 5159–5164 (2012)Google Scholar
  25. Kaye, K., Fogel, A.: The temporal structure of face-to-face communication between mothers and infants. Dev. Psychol. 16(5), 454–464 (1980)CrossRefGoogle Scholar
  26. Koterba, E.A., Iverson, J.M.: Investigating motionese: the effect of infant-directed action on infants’ attention and object exploration. Infant Behav. Dev. 32(4), 437–444 (2009)CrossRefGoogle Scholar
  27. Kuhl, P.K., Andruski, J.E., Chistovich, I.A., Chistovich, L.A., Kozhevnikova, E.V., Ryskina, V.L., Stolyarova, E.I., Sundberg, U., Lacerda, F.: Cross-language analysis of phonetic units in language addressed to infants. Science 277(5326), 684–686 (1997)CrossRefGoogle Scholar
  28. Marshall, P.J., Young, T., Meltzoff, A.N.: Neural correlates of action observation and execution in 14-month-old infants: an event-related EEG desynchronization study. Dev. Sci. 14(3), 474–480 (2011)CrossRefGoogle Scholar
  29. Moore, C., Dunham, P.J. (eds.): Joint Attention: Its Origins and Role in Development. Lawrence Erlbaum, Englewood Cliffs (1995)Google Scholar
  30. Nagai, Y.: Synthetic approach to social cognitive development and design of support systems for developmental disorders (in japanese). In: Proceedings of the 31st Annual Conference of the Robotics Society of Japan, Tokyo, number 1 (2013)Google Scholar
  31. Nagai, Y., Rohlfing, K.J.: Computational analysis of Motionese toward scaffolding robot action learning. IEEE Trans. Auton. Ment. Dev. 1(1), 44–54 (2009)CrossRefGoogle Scholar
  32. Nagai, Y., Hosoda, K., Morita, A., Asada, M.: A constructive model for the development of joint attention. Connect. Sci. 15(4), 211–229 (2003)CrossRefGoogle Scholar
  33. Nagai, Y., Asada, M., Hosoda, K.: Learning for joint attention helped by functional development. Adv. Robot. 20(10), 1165–1181 (2006)CrossRefGoogle Scholar
  34. Nagai, Y., Kawai, Y., Asada, M.: Emergence of mirror neuron system: immature vision leads to self/other correspondence. In: Proceedings of the 1st Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics (2011)Google Scholar
  35. Nagai, Y., Nakatani, A., Qin, S., Fukuyama, H., Myowa-Yamakoshi, M., Asada, M.: Co-development of information transfer within and between infant and caregiver. In: Proceedings of the 2nd IEEE International Conference on Development and Learning and on Epigenetic Robotics, San Diego (2012)Google Scholar
  36. Piaget, J.: The Origins of Intelligence in Children. International Universities Press, New York (1952)CrossRefGoogle Scholar
  37. Rizzolatti, G., Sinigaglia, C.: Mirrors in the Brain: How Our Minds Share Actions and Emotions. Oxford University Press, Oxford/New York (2008)Google Scholar
  38. Rizzolatti, G., Fogassi, L., Gallese, V.: Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci. 2, 661–670 (2001)CrossRefGoogle Scholar
  39. Rohlfing, K.J., Fritsch, J., Wrede, B., Jungmann, T.: How can multimodal cues from child-directed interaction reduce learning complexity in robots? Adv. Robot. 20(10), 1183–1199 (2006)CrossRefGoogle Scholar
  40. Scaife, M., Bruner, J.: The capacity for joint visual attention in the infant. Nature 253, 265–266 (1975)CrossRefGoogle Scholar
  41. Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85(2), 461–464 (2000)CrossRefGoogle Scholar
  42. Shibata, M., Fuchino, Y., Naoi, N., Kohno, S., Kawai, M., Okanoya, K., Myowa-Yamakoshi, M.: Broad cortical activation in response to tactile stimulation in newborns. Neuroreport 23(6), 373–377 (2012)CrossRefGoogle Scholar
  43. Umiltà, M.A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., Rizzolatti, G.: I know what you are doing. A neurophysiological study. Neuron 31(1), 155–165 (2001)CrossRefGoogle Scholar
  44. Vygotsky, L.S.: Interaction between learning and development. In: Mind in Society: The Development of Higher Psychological Processes, pp. 79–91. Harvard University Press, Cambridge (1978)Google Scholar
  45. Zukow-Goldring, P., Arbib, M.A.: Affordances, effectivities, and assisted imitation: caregivers and the directing of attention. Neurocomputing 70(13–15), 2181–2193 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations