Silica Glass Optical Fiber and Fiber Fuse

  • Shin-ichi TodorokiEmail author
Part of the NIMS Monographs book series (NIMSM)


There is serious concern in the telecommunication industry that the transmission capacity limit may be reached in the near future. One reason for this is the fiber fuse phenomenon, which is the continuous self-destruction of silica glass optical fiber induced and fed by propagating light. This phenomenon imposes an inevitable limit on the light power that can be handled by a fiber and prevents us from increasing the transmission capacity growth of optical communication. This chapter briefly reviews the basics of silica glass optical fibers and the fiber fuse phenomenon. The initiation of a fiber fuse is caused by the generation of a thermally decomposed product of silica glass. Its high absorbance results in a confined plasma (or optical discharge) propagating along the fiber core. This is due to the excellent heat resistance and low thermal conductivity of silica glass.


Silica glass Optical fiber Fiber fuse Light-induced damage 


  1. 1.
    K.S. Abedin, T. Morioka, Remote detection of fiber fuse propagating in optical fibers, in Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference (2009). doi: 10.1364/OFC.2009.OThD5 (OThD5)
  2. 2.
    K.S. Abedin, M. Nakazawa, Real time monitoring of a fiber fuse using an optical time-domain reflectometer. Opt. Expr. 18(20), 21315–21321 (2010). doi: 10.1364/OE.18.021315
  3. 3.
    K.S. Abedin, M. Nakazawa, T. Miyazaki, Backreflected radiation due to a propagating fiber fuse. Opt. Expr. 17(8), 6525–6531 (2009). doi: 10.1364/OE.17.006525 CrossRefGoogle Scholar
  4. 4.
    N. Akhmediev, A. Ankiewicz, Dissipative solitons in the complex Ginzburg-Landau and Swift-Hohenberg equations, in Dissipative Solitons, Lecture Notes in Physics, ed. by N. Akhmediev, A. Ankiewicz (Springer, Berlin, 2005), pp. 1–17, doi:10.1007/10928028_1 (ISBN 978-3-540-31528-5)Google Scholar
  5. 5.
    N. Akhmediev, J. St, P. Russell, M. Taki, J.M. Soto-Crespo, Heat dissipative solitons in optical fibers. Phys. Lett. A 372(9), 1531–1534 (2008). doi: 10.1016/j.physleta.2007.09.049 CrossRefGoogle Scholar
  6. 6.
    P. André, A. Rocha, F. Domingues, M. Facão, Thermal effects in optical fibres, in Developments in Heat Transfer, ed. by M. A. dos Santos Bernardes (InTech. Croatia, 2011), pp.1–20, doi: 10.5772/22812 (ISBN 978-953-307-569-3)
  7. 7.
    P.S. André, M. Facão, A.M. Rocha, P. Antunes, A. Martins, Evaluation of the fuse effect propagation in networks infrastructures with different types of fibers, in Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference (2010). doi: 10.1364/NFOEC.2010.JWA10 (JWA10)
  8. 8.
    A. Ankiewicz, W. Chen, J. St, P. Russell, M. Taki, N. Akhmediev, Velocity of heat dissipative solitons in optical fibers. Opt. Lett. 33(19), 2176–2178 (2008). doi: 10.1364/OL.33.002176 CrossRefGoogle Scholar
  9. 9.
    R.M. Atkins, P.G. Simpkins, A.D. Yablon, Track of a fiber fuse: a rayleigh instability in optical waveguides. Opt. Lett. 28(12), 974–976 (2003). doi: 10.1364/OL.28.000974 CrossRefGoogle Scholar
  10. 10.
    I.A. Bufetov, E.M. Dianov, Optical discharge in optical fibers. Physics-Uspekhi 48(1), 91–94 (2005). doi: 10.1070/PU2005v048n01ABEH002081 CrossRefGoogle Scholar
  11. 11.
    E.D. Bumarin, S.I. Yakovlenko, Temperature distribution in the bright spot of the optical discharge in an optical fiber. Laser Phys. 16(8), 1235–1241 (2006). doi: 10.1134/S1054660X06080123 CrossRefGoogle Scholar
  12. 12.
    D.D., Davis, S.C. Mettler, D.J. DiGiovani, Experimental data on the fiber fuse, ed. by H.E. Bennett, A.H. Guenther, M.R. Kozlowski, B.E. Newnam, M.J. Soileau, in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, SPIE Proceedings, vol. 2714, Boulder, CO, USA, pp. 202–210 (1996). 30 Oct 1995, doi: 10.1117/12.240382
  13. 13.
    D.D. Davis, S.C. Mettler, D.J. DiGiovani, A comparative evaluation of fiber fuse models, ed. by H.E. Bennett, A.H. Guenther, M.R. Kozlowski, B.E. Newnam, M.J. Soileau, in Laser-Induced Damage in Optical Materials: 1996, SPIE Proceedings, vol. 2966, Boulder, CO, USA, pp. 592–606 (1997). 7 Oct 1996, doi: 10.1117/12.274220
  14. 14.
    E.M. Dianov, I.A. Bufetov, A.A. Frolov, Destruction of silica fiber cladding by the fuse effect, in OFC 2004 Technical Digest. Los Angels (2004) (TuB4)Google Scholar
  15. 15.
    E.M. Dianov, I.A. Bufetov, A.A. Frolov, Destruction of silica fiber cladding by the fuse effect. Opt. Lett. 29(16), 1852–1854 (2004b). doi: 10.1364/OL.29.001852 CrossRefGoogle Scholar
  16. 16.
    E.M. Dianov, I.A. Bufetov, A.A. Frolov, Y.K. Chamorovsky, G.A. Ivanov, I.L. Vorobjev, Fiber fuse effect in microstructured fibers. IEEE Photon. Technol. Lett. 16(1), 180–181 (2004c). doi: 10.1109/LPT.2003.820465 CrossRefGoogle Scholar
  17. 17.
    E.M. Dianov, I.A. Bufetov, A.A. Frolov, V.M. Mashinskii, V.G. Plotnichenko, M.F. Churbanov, G.E. Snopatin, Catastrophic destruction of fluoride and chalcogenide optical fibers. Electron. Lett. 38(15), 783–784 (2002a). doi: 10.1049/el:20020539 CrossRefGoogle Scholar
  18. 18.
    E.M. Dianov, I.A. Bufetov, A.A. Frolov, V.G. Plotnichenko, V.M. Mashinskii, M.F. Churbanov, G.E. Snopatin, Catastrophic destruction of optical fibres of various composition caused by laser radiation. Quantum Electron. 32(6), 476–478 (2002b). doi: 10.1070/QE2002v032n06ABEH002226 CrossRefGoogle Scholar
  19. 19.
    E.M. Dianov, V.E. Fortov, I.A. Bufetov, V.P. Efremov, A.E. Rakitin, M.A. Melkumov, M.I. Kulish, A.A. Frolov, High-speed photography, spectra, and temperature of optical discharge in silica-based fibers. IEEE Photon. Technol. Lett. 18(6), 752–754 (2006). doi: 10.1109/LPT.2006.871110
  20. 20.
    E.M. Dianov, V.M. Mashinskii, V.A. Myzina, Y.S. Sidorin, A.M. Streltsov, A.V. Chickolini, Change of refractive index profile in the process of laser-induced fiber damage. Sov. Lightwave Commun. 2, 293–299 (1992)Google Scholar
  21. 21.
    F. Domingues, A. Rocha, P. Antunes, A.R. Frias, R.A.S. Ferreira, P.S. André, Evaluation of the fuse effect propagation velocity in bend loss insensitive fibers, in Technical Digest-17th OptoElectronics and Communications Conference, OECC2012, pp. 799–800 (2012). doi: 10.1109/OECC.2012.6276636 (6C3-2)
  22. 22.
    T.J. Driscoll, J.M. Calo, N.M. Lawandy, Explaining the optical fuse. Opt. Lett. 16(13), 1046–1048 (1991). doi: 10.1364/OL.16.001046 CrossRefGoogle Scholar
  23. 23.
    D.A. Dvoretskiy, V.F. Hopin, A.N. Gur’yanov, L.K. Denisov, L.D. Ishakova, I.A. Bufetov, Optical losses in silica based fibers within the temperature range from 300 to 1500 K. Sci Ed. Electron. Sci. Tech. J. 5 (2013). doi: 10.7463/0513.0554843 (in Russian)
  24. 24.
    M. Facão, A.M. Rocha, P.S. André, Traveling solutions of the fuse effect in optical fibers. J. Lightwave Technol. 29(1), 109–114 (2011). doi: 10.1109/JLT.2010.2094602 CrossRefGoogle Scholar
  25. 25.
    R.I. Golyatina, A.N. Tkachev, S.I. Yakovlenko, Calculation of velocity and threshold for a thermal wave of laser radiation absorption in a fiber optic waveguide based on the two-dimensional nonstationary heat conduction equation. Laser Phys. 14(11), 1429–1433 (2004)Google Scholar
  26. 26.
    V.J. Gorbachenko, A.Y. Dovzhenko, A.G. Merzhanov, E.N. Rumanov, V.E. Fortov, O.E. Yachmeneva, Propagation limits for a slow wave of optical breakdown in a fiber light guide. Dokl. Phys. 55(8), 384–387 (2010)CrossRefGoogle Scholar
  27. 27.
    W. Ha, Y. Jeong, K. Oh, Fiber fuse effect in hollow optical fibers. Opt. Lett. 36(9), 1536–1538 (2011). doi: 10.1364/OL.36.001536 CrossRefGoogle Scholar
  28. 28.
    D.P. Hand, T.A. Birks, Single-mode tapers as ‘fibre fuse’ damage circuit-breakers. Electron. Lett. 25(1), 33–34 (1989). doi: 10.1049/el:19890024
  29. 29.
    D.P. Hand, J. St, P. Russell, Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse. Opt. Lett. 13(9), 767–769 (1988). doi: 10.1364/OL.13.000767 CrossRefGoogle Scholar
  30. 30.
    D.P. Hand, J.E. Townsend, P.S.J. Russell, Optical damage in fibres: the fibre fuse, in Digest of Conference on Lasers and Electro-Optics, Anaheim, US, Paper WJ1 (1988)Google Scholar
  31. 31.
    N. Hanzawa, K. Kurokawa, K. Tsujikawa, T. Matsui, K. Nakajima, S. Tomita, M. Tsubokawa, Suppression of fiber fuse propagation in hole assisted fiber and photonic crystal fiber. J. Lightwave Technol. 28(15), 2115–2120 (2010). doi: 10.1109/JLT.2010.2052913 CrossRefGoogle Scholar
  32. 32.
    J. Hecht, City of Light: The Story of Fiber Optics (Oxford University Press, Oxford, 2004). (Revised & expanded paperback edition) (ISBN 978-0195162554)Google Scholar
  33. 33.
    T. Izawa, S. Sudo, Optical Fibers: Materials and Fabrication (KTK Scientific Publishers, Tokyo, 1987) (ISBN 978-9027723789)Google Scholar
  34. 34.
    H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Itoh, Y. Asano, S. Tanaka, Transmission characteristics and reliability of pure-silica-core single-mode fibers. J. Lightwave Technol. 4(8), 1144–1150 (1986). doi: 10.1109/JLT.1986.1074837
  35. 35.
    K.C. Kao, G.A. Hockham, Dielectric-fibre surface waveguide for optical frequencies. Proc. Inst. Electr. Eng. 113(7), 1151–1158 (1966). doi: 10.1049/piee.1966.0189 CrossRefGoogle Scholar
  36. 36.
    F.P. Kapron, D.B. Keck, R.D. Maurer, Radiation losses in glass optical waveguides. Appl. Phys. Lett. 17(10), 423–425 (1970). doi: 10.1063/1.1653255 CrossRefGoogle Scholar
  37. 37.
    R. Kashyap, Self-propelled self-focusing damage in optical fibres, in Lasers ’87: Proceedings of the 10th International Conference on Lasers and Applications, Lake Tahoe, NV, 7–11 Dec 1987, pp. 859–866. STS Press, McLean (1988)Google Scholar
  38. 38.
    R. Kashyap, Fiber fuse - from a curious effect to a critical issue: a 25th year retrospective. Opt. Expr. (2013). doi: 10.1364/OE.21.006422 Google Scholar
  39. 39.
    R. Kashyap, K.J. Blow, Observation of catastrophic self-propelled self-focusing in optical fibres. Electron. Lett. 24(1), 47–49 (1988). doi: 10.1049/el:19880032 CrossRefGoogle Scholar
  40. 40.
    R. Kashyap, A. Sayles, G.F. Cornwell, Heat flow modeling and visualization of catastrophic selfpropagating damage in singlemode optical fibers at low powers, ed. by H.E. Bennett, A.H. Guenther, M.R. Kozlowski, B.E. Newnam, M.J. Soileau, in Laser-Induced Damage in Optical Materials: 1996, SPIE Proceedings, vol. 2966, Boulder, CO, USA, 7 Oct 1996, pp. 586–591 (1997). doi: 10.1117/12.274219
  41. 41.
    T. Kinoshita, N. Sato, M. Yamada, Detection and termination system for optical fiber fuse, in OptoElectronics and Communications Conference Held Jointly with 2013 International Conference on Photonics in Switching (OECC/PS) (2013) (Paper WS4-6)Google Scholar
  42. 42.
    K. Kurokawa, Optical fiber for high-power optical communication. Crystals 2(4), 1382–1392 (2012). doi: 10.3390/cryst2041382 CrossRefGoogle Scholar
  43. 43.
    M.M. Lee, J.M. Roth, T.G. Ulmer, C.V. Cryan, The fiber fuse phenomenon in polarization-maintaining fibers at 1.55 \(\upmu \)m, in Proceedings of the Conference on Lasers and Electro-Optics (CLEO) (2006) (JWB66)Google Scholar
  44. 44.
    T. Morioka, New generation optical infrastructure technologies : “EXAT initiative” towards 2020 and beyond, in Technical Digest-14th OptoElectronics and Communications Conference, OECC2009, p. FT4 (2009). doi: 10.1109/OECC.2009.5213198
  45. 45.
    N. Nishimura, K. Seo, M. Shiino, R. Yuguchi, Study of high-power endurance characteristics in optical fiber link, in Technical Digest of Optical Amplifiers and Their Applications, pp. 193–195 (2003) (TuC4) (We.P.20)Google Scholar
  46. 46.
    H.R. Philipp, Optical properties of non-crystalline Si, SiO, SiO\(_{x}\) and SiO\(_{2}\). J. Phys. Chem. Solids 32(8), 1935–1945 (1971). doi: 10.1016/S0022-3697(71)80159-2
  47. 47.
    H.R. Philipp, Silicon dioxide (SiO\(_2\)) (glass), in Handbook of Optical Constants of Solids, ed. by E.D. Palik (Academic Press, New York, 1985), pp. 749–763 (ISBN 978-0125444200)Google Scholar
  48. 48.
    A.M. Rocha, P. Antunes, F. Domingues, M. Facão, P.S. André, Configuration for detecting the fiber fuse propagation using a FBG sensor, in 12th International Conference on Transparent Networks. Munich, Germany (2010). doi: 10.1109/ICTON.2010.5549119 (We.P.20)
  49. 49.
    A.M. Rocha, F. Domingues, M. Facão, P.S. André, Threshold power of fiber fuse effect for different types of optical fiber, in The 13th International Conference on Transparent Optical Networks (ICTON 2011), pp. 1457–1549, Stockholm, Sweden (2011). doi: 10.1109/ICTON.2011.5971025 (Tu.P.13)
  50. 50.
    A.M. Rocha, M. Facão, A. Martins, P.S. André, Simulation of fiber fuse effect propagation, in International Conference on Transparent Networks-Mediterranean Winter 2009, Angers, France (2009). doi: 10.1109/ICTONMW.2009.5385610 (FrP.12)
  51. 51.
    A.M. Rocha, G. Fernandes, F. Domingues, M. Niehus, M. Facão, P.S. André, Halting the fuse discharge propagation using optical fiber microwires. Opt. Expr. 20(19), 21083–21088 (2012). doi: 10.1364/OE.20.021083 CrossRefGoogle Scholar
  52. 52.
    H.L. Schick, A thermodynamic analysis of the high-temperature vaporization properties of silica. Chem. Rev. 60(4), 331–362 (1960). doi: 10.1021/cr60206a002 CrossRefGoogle Scholar
  53. 53.
    K. Seo, N. Nishimura, M. Shiino, R. Yuguchi, H. Sasaki, Evaluation of high-power endurance in optical fiber links. Furukawa Rev. 24, 17–22 (2003)Google Scholar
  54. 54.
    Y. Shuto, Heat conduction modeling of fiber fuse in single-mode optical fibers. IEICE Trans. Commun. B J94-B(8), 928–937 (2011) (in Japanese)Google Scholar
  55. 55.
    Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, R. Nagase, Fiber fuse phenomenon in step-index single-mode optical fibers. IEEE J. Quantum Electron. 40(8), 1113–1121 (2004). doi: 10.1109/JQE.2004.831635 CrossRefGoogle Scholar
  56. 56.
    Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, R. Nagase, Fiber fuse phenomenon in triangular-profile single-mode optical fibers. J. Lightwave Technol. 24(2), 846–852 (2006)CrossRefGoogle Scholar
  57. 57.
    A. Streek, P. Regenfuß, T. Süß, T, R. Ebert, H. Exner, Laser micro sintering of SiO\(_2\) with an NIR-laser, ed. by V.P. Veiko, in Fundamentals of Laser Assisted Micro- and Nanotechnologies (FLAMN-07), SPIE Proceedings, vol. 6985, pp. 69850Q (2008). doi: 10.1117/12.787121
  58. 58.
    H. Takara, H. Masuda, H. Kanbara, Y. Abe, Y. Miyamoto, R. Nagase, T. Morioka, S. Matsuoka, M. Shimizu, K. Hagimoto, Evaluation of fiber fuse characteristics of hole-assisted fiber for high power optical transmission systems, in Proceedings of the 35th European Conference on Optical, Communication, p. 312 (2009) (P1.12)Google Scholar
  59. 59.
    K. Takenaga, S. Omori, R. Goto, S. Tanigawa, S. Matsuo, K. Himeno, Evaluation of high-power endurance of bend-insensitive fibers. in Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference (2008). doi: 10.1109/OFC.2008.4528147 (JWA11)
  60. 60.
    K. Takenaga, S. Tanigawa, S. Matsuo, M. Fujimaki, H. Tsuchiya, Fiber fuse phenomenon in hole-assisted fibers, in Proceedings of the 34th European Conference on Optical Communication, vol. 5, pp. 27–28 (2008). doi: 10.1109/ECOC.2008.4729434 (P.1.14)
  61. 61.
    S. Todoroki, Animation of fiber fuse damage, demonstrating periodic void formation. Opt. Lett. 30(19), 2551–2553 (2005). doi: 10.1364/OL.30.002551 CrossRefGoogle Scholar
  62. 62.
    S. Todoroki, Origin of periodic void formation during fiber fuse. Opt. Expr. 13(17), 6381–6389 (2005). doi: 10.1364/OPEX.13.006381 CrossRefGoogle Scholar
  63. 63.
    S. Todoroki, Transient propagation mode of fiber fuse leaving no voids. Opt. Expr. 13(23), 9248–9256 (2005). doi: 10.1364/OPEX.13.009248 CrossRefGoogle Scholar
  64. 64.
    S. Todoroki, In-situ observation of fiber-fuse ignition, ed. by V.I. Konov, V.Y. Panchenko, K. Sugioka, V.P. Veiko, in International Conference on Lasers, Applications, and Technologies 2005: Laser-Assisted Micro- and Nanotechnologies, SPIE Proceedings, vol. 6161, pp. 61610N, 14 May 2005 (2006). doi: 10.1117/12.675080
  65. 65.
    S. Todoroki, Threshold power reduction of fiber fuse propagation through a white tight-buffered single-mode optical fiber. IEICE Electron. Expr. 8(23), 1978–1982 (2011). doi: 10.1587/elex.8.1978 CrossRefGoogle Scholar
  66. 66.
    S. Todoroki, Fiber fuse propagation behavior, in Selected Topics on Optical Fiber Technology, ed. by Y. Moh, S.W. Harun, H. Harun (InTech, Croatia, 2012), pp. 551–570. doi: 10.5772/26390 (ISBN 978-953-51-0091-1)
  67. 67.
    S. Todoroki, Partially self-pumped fiber fuse propagation through a white tight-buffered single-mode optical fiber, in Optical Fiber Communication Conference, OSA Technical Digest. Optical Society of America (2012). doi: 10.1364/OFC.2012.OTh4I.4 (Paper OTh4I.4)
  68. 68.
    S. Todoroki, Fiber fuse propagation modes in typical single-mode fibers, in Optical Fiber Communication Conference, OSA Technical Digest. Optical Society of America (2013). doi: 10.1364/NFOEC.2013.JW2A.11 (Paper JW2A.11)
  69. 69.
    S. Todoroki, Modes and threshold power of fiber fuse propagation. IEICE Trans. Commun. B J96-B(3), 243–248 (2013) (in Japanese, open access)Google Scholar
  70. 70.
    P.W. Turner, L. Dong, Drawing of silica optical fibers, in Properties of Glasses and Rare-Earth Doped Glasses for Optical Fibers, EMIS Datareview Series, ed. by D. Hewak (NSPEC, IEE, London, 1998), pp. 62–64 (ISBN 978-0852969526)Google Scholar
  71. 71.
    A.D. Yablon, Optical Fiber Fusion Splicing, Springer Series in Optical Sciences (Springer, Berlin, 2005). doi: 10.1007/b137759 (ISBN 978-3-540-23104-2)
  72. 72.
    S. Yanagi, S. Asakawa, M. Kobayashi, Y. Shuto, R. Naruse, Fiber fuse terminator, in The 5th Pacific Rim Conference on Lasers and Electro-Optics, vol. 1, Taipei, Taiwan, p. 386. 22–26 July 2003 (2003). doi: 10.1109/CLEOPR.2003.1274838 (W4J-(8)-6)

Copyright information

© National Institute for Materials Science, Japan. Published by Springer Japan 2014

Authors and Affiliations

  1. 1.Photonic Materials UnitNational Institute for Materials ScienceIbarakiJapan

Personalised recommendations