Skip to main content

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 350))

Abstract

The approximation theory of algebraic numbers by rationals or algebraic numbers occupies an important part in Diophantine approximation theory. After C.F. Osgood’s observation, P. Vojta formulated an analogue of Nevanlinna theory and Diophantine approximation theory and proposed the so-called Vojta conjecture in Diophantine approximation theory which corresponds to Nevanlinna’s Second Main Theorem. In this chapter, referring the proofs of results of the Diophantine approximation to other literature, we formulate them in view of Nevanlinna theory which has been discussed up to the present point. As an application we will prove some theorems on rational points which are analogous to those obtained in Chaps. 7 and 8; the analogy will be observed not only in the statements but also in their proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cf. the footnote to Theorem 4.9.7.

References

Bombieri, E.

  1. The Mordell conjecture revisited, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 17 (1990), 615–640.

    MathSciNet  MATH  Google Scholar 

Faltings, G.

  1. Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983b), 349–366.

    Article  MathSciNet  MATH  Google Scholar 

  2. Diophantine approximation on abelian varieties, Ann. Math. 133 (1991), 549–576.

    Article  MathSciNet  MATH  Google Scholar 

  3. The general case of Lang’s conjecture, Barsoti Symposium in Algebraic Geometry, V. Cristante and W. Messing (Eds.), pp. 175–182, Academic Press, San Diego, 1994.

    Google Scholar 

Fujisaki, G.

  1. Introduction to Algebraic Number Fields (I) (II) (in Japanese), Shokabo, Tokyo, 1975.

    Google Scholar 

Lang, S.

  1. Algebra, Addison-Wesley, Reading, 1965.

    MATH  Google Scholar 

Mordell, L.J.

  1. On the rational solutions of the indeterminate equations of the third and fourth degrees, Proc. Camb. Philos. Soc. 21 (1922), 179–192.

    Google Scholar 

Morita, Y.

  1. Theory of Integral Numbers (in Japanese), Foundation of Mathematics 13, University of Tokyo Press, Tokyo, 1999.

    Google Scholar 

Nagata, M.

  1. Theory of Commutative Fields (in Japanese), Selected Series of Mathematics 6, Shokabo, 1967, Trans. Math. Mono. 125, Am. Math. Soc., Providence, 1993.

    MATH  Google Scholar 

Noguchi, J.

  1. On Nevanlinna’s second main theorem, Geometric Complex Analysis, Proc. 3rd MSJ-IRI Hayama, 1995, J. Noguchi et al. (Eds.), pp. 489–503, World Scientific, Singapore, 1996.

    Google Scholar 

  2. Nevanlinna–Cartan theory over function fields and a Diophantine equation, J. Reine Angew. Math. 487 (1997), 61–83; Correction to the paper: Nevanlinna–Cartan theory over function fields and a Diophantine equation, J. Reine Angew. Math. 497 (1998), 235.

    MathSciNet  MATH  Google Scholar 

  3. An arithmetic property of Shirosaki’s hyperbolic projective hypersurface, Forum Math. 15 (2003a), 935–941.

    MathSciNet  MATH  Google Scholar 

Roth, K.F.

  1. Rational approximations to algebraic numbers, Mathematika 2 (1955), 1–20.

    Article  MathSciNet  MATH  Google Scholar 

Ru, M. and Wong, P.-M.

  1. Integral points of P n−{2n+1 hyperplanes in general position}, Invent. Math. 106 (1991), 195–216.

    Article  MathSciNet  MATH  Google Scholar 

Schlickewei, H.P.

  1. The p-adic Thue-Siegel-Roth-Schmidt theorem, Arch. Math. 29 (1977), 267–270.

    Article  MathSciNet  MATH  Google Scholar 

Schmidt, W.M.

  1. Diophantine Approximations and Diophantine Equations, Lect. Notes Math. 1467, Springer, Berlin, 1991.

    MATH  Google Scholar 

Shirosaki, M.

  1. On some hypersurfaces and holomorphic mappings, Kodai Math. J. 21 (1998), 29–34.

    Article  MathSciNet  MATH  Google Scholar 

Siegel, C.L.

  1. The integer solutions of the equation y 2=ax n+bx n−1+⋯+k, J. Lond. Math. Soc. 1 (1926), 66–68.

    MATH  Google Scholar 

Vojta, P.

  1. Diophantine Approximations and Value Distribution Theory, Lect. Notes Math. 1239, Springer, Berlin, 1987.

    MATH  Google Scholar 

  2. Siegel’s theorem in the compact case, Ann. Math. (2) 133 no. 3 (1991), 509–548.

    Article  MathSciNet  MATH  Google Scholar 

  3. Integral points on subvarieties of semiabelian varieties, I, Invent. Math. 126 (1996), 133–181.

    Article  MathSciNet  MATH  Google Scholar 

  4. A more general ABC conjecture, Int. Math. Res. Not. 21 (1998), 1103–1116.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Noguchi, J., Winkelmann, J. (2014). Diophantine Approximation. In: Nevanlinna Theory in Several Complex Variables and Diophantine Approximation. Grundlehren der mathematischen Wissenschaften, vol 350. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54571-2_9

Download citation

Publish with us

Policies and ethics