Skip to main content

Online Monitoring of Biodegradation Processes Using Enzymatic Biosensors

  • Chapter
  • First Online:
Biodegradative Bacteria

Abstract

Biodegradation of organic compounds by natural attenuation or bioaugmentation is widely used for removal of unwanted chemicals from the environment. The essential component of remediation technologies is monitoring of a contaminant levels. Although the analytical methods of gas and liquid chromatography are available, they are time-, labour- and resource-demanding, placing limitations on the number of samples that can be analysed at a time. Furthermore, these methods cannot be easily adapted for in situ measurements. Biosensors can be used as an alternative or complement to these conventional techniques. Biosensors are based on a biological component coupled to a transducer, which translates the interaction between an analyte and a biocomponent into a signal that can be processed. Application of biosensors in monitoring of environmental contaminants is promising owing to their sensitivity, low costs, user-friendliness and adaptability for in situ measurements. In this contribution, we describe development of haloalkane dehalogenase-based biosensors and their application for detection of halogenated hydrocarbons in the environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CB:

Chlorobutane

CCMP:

3-Chloro-2-(chloromethyl)-1-propene

DBA:

1,2-Dibromoethane

DbjA:

Haloalkane dehalogenase from Bradyrhizobium japonicum USDA110

DCA:

1,2-Dichloroethane

DhaA:

Haloalkane dehalogenase from Rhodococcus rhodochrous NCIMB 13064

DhlA:

Haloalkane dehalogenase from Xanthobacter autotrophicus GJ10

EC:

Enzyme commission number

LED:

Light-emitting diode

LinB:

Haloalkane dehalogenase from Sphingobium japonicum UT26

MW:

Molecular weight

pI:

Isoelectric point

SD:

Standard deviation

TCP:

1,2,3-Trichloropropane

References

  • Allan IJ, Vrana B, Greenwood R, Mills GA, Knutsson J, Holmberg A, Guigues N, Fouillac A-M, Laschi S (2006) Strategic monitoring for the European Water Framework Directive. Trends Anal Chem 25:704–715

    CAS  Google Scholar 

  • Andreescu S, Marty J-L (2006) Twenty years research in cholinesterase biosensors: from basic research to practical applications. Biomol Eng 23:1–15

    PubMed  CAS  Google Scholar 

  • Andreescu S, Sadik OA (2004) Trends and challenges in biochemical sensors for clinical and environmental monitoring. Pure Appl Chem 76:861–878

    CAS  Google Scholar 

  • Bachas-Daunert PG, Sellers ZP, Wei Y (2009) Detection of halogenated organic compounds using immobilized thermophilic dehalogenase. Anal Bioanal Chem 395:1173–1178

    PubMed  CAS  Google Scholar 

  • Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D, Tawfik DS, Milo R (2011) The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochem 50:4402–4410

    CAS  Google Scholar 

  • Bickerstaff GF (1997) Immobilization of enzymes and cells. In: Bickerstaff GF (ed) Methods in biotechnology, 1st edn. Humana Press, New Jersey

    Google Scholar 

  • Bidmanova S, Chaloupkova R, Damborsky J, Prokop Z (2010a) Development of an enzymatic fiber-optic biosensor for detection of halogenated hydrocarbons. Anal Bioanal Chem 398:1891–1898

    PubMed  CAS  Google Scholar 

  • Bidmanova S, Pohanka M, Cabal J, Prokop Z, Damborsky J (2010b) Early warning biosensors for detection of chemical warfare agents (in Czech). Chem Listy 104:302–308

    CAS  Google Scholar 

  • Bidmanova S, Hlavacek A, Damborsky J, Prokop Z (2012) Conjugation of 5(6)-carboxy-fluorescein and 5(6)-carboxynaphthofluorescein with bovine serum albumin and their immobilization for optical pH sensing. Sens Actuators: B Chem 161:93–99

    CAS  Google Scholar 

  • Biran I, Yu X, Walt DR (2008) Optrode-based fiber optic biosensors (bio-optrode). In: Ligler FS, Taitt CR (eds) Optical biosensors: Today and tomorrow, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Blum M-M, Richardt A (2008) Hydrolytic enzymes for chemical warfare agent decontamination. In: Richardt A, Blum M-M (eds) Decontamination of warfare agent, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Bosma T, Pikkemaat MG, Kingma J, Dijk J, Janssen DB (2003) Steady-state and pre-steady-state kinetic analysis of halopropane conversion by a Rhodococcus haloalkane dehalogenase. Biochem 42:8047–8053

    CAS  Google Scholar 

  • Campàs M, Prieto-Simón B, Marty J-L (2009) A review of the use of genetically engineered enzymes in electrochemical biosensors. Semin Cell Dev Biol 20:3–9

    PubMed  Google Scholar 

  • Campbell DW, Müller C, Reardon KF (2006) Development of a fiber optic enzymatic biosensor for 1,2-dichloroethane. Biotechnol Lett 28:883–887

    PubMed  CAS  Google Scholar 

  • Cao L (2005) Unconventional enzyme immobilization. In: Cao L (ed) Carrier-bound immobilized enzymes, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Chaloupkova R, Sykorova J, Prokop Z, Jesenska A, Monincova M, Pavlova M, Tsuda M, Nagata Y, Damborsky J (2003) Modification of activity and specificity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 by engineering of its entrance tunnel. J Biol Chem 278:52622–52628

    PubMed  CAS  Google Scholar 

  • Choi MMF (2004) Progress in enzyme-based biosensors using optical transducers. Microchim Acta 148:107–132

    CAS  Google Scholar 

  • Chovancova E, Kosinski J, Bujnicki JM, Damborsky J (2007) Phylogenetic analysis of haloalkane dehalogenases. Proteins 67:305–316

    PubMed  CAS  Google Scholar 

  • D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337–353

    PubMed  Google Scholar 

  • Damborsky J, Rorije E, Jesenska A, Nagata Y, Klopman G, Peijnenburg WJGM (2001) Structure-specificity relationships for haloalkane dehalogenases. Environ Toxicol Chem 20:2681–2689

    PubMed  CAS  Google Scholar 

  • De Marco R, Clarke G, Pejcic B (2007) Ion-selective electrode potentiometry in environmental analysis. Electroanal 19:1987–2001

    Google Scholar 

  • Dennison MJ, Turner AP (1995) Biosensors for environmental monitoring. Biotech Adv 13:1–12

    CAS  Google Scholar 

  • Dravis BC, Swanson PE, Russell AJ (2001) Haloalkane hydrolysis with an immobilized haloalkane dehalogenase. Biotechnol Bioeng 75:416–423

    PubMed  CAS  Google Scholar 

  • Drienovska I, Chovancova E, Koudelakova T, Damborsky J, Chaloupkova R (2012) Biochemical characterization of the first haloalkane dehalogenase from the cold-adapted bacterium. Appl Environ Microbiol 78:4995–4998

    PubMed  CAS  Google Scholar 

  • Duong HD, Sohn O-J, Lam HT, Rhee JI (2006) An optical pH sensor with extended detection range based on fluoresceinamine covalently bound to sol–gel support. Microchem J 84:50–55

    CAS  Google Scholar 

  • Eltzov E, Marks RS (2011) Whole-cell aquatic biosensors. Anal Bioanal Chem 400:895–913

    PubMed  CAS  Google Scholar 

  • Farré M, Kantiani L, Pérez S, Barceló D (2009) Sensors and biosensors in support of EU Directives. Trends Anal Chem 28:170–185

    Google Scholar 

  • Fetzner S (1998) Bacterial dehalogenation. Appl Microbiol Biotechnol 50:633–657

    PubMed  CAS  Google Scholar 

  • Fetzner S, Lingens F (1994) Bacterial dehalogenases: Biochemistry, genetics, and biotechnological applications. Microbiol Mol Biol Rev 58:641–685

    CAS  Google Scholar 

  • Gray KA, Richardson TH, Kretz KK, Short JM, Bartnek F, Knowles R, Kan L, Swanson PE, Robertson DE (2001) Rapid evolution of reversible denaturation and elevated melting temperature in a microbial haloalkane dehalogenase. Adv Synth Catal 343:607–617

    CAS  Google Scholar 

  • Griffiths D, Hall G (1993) Biosensors - what real progress is being made? Trends Biotechnol 11:122–130

    PubMed  CAS  Google Scholar 

  • Hasan K, Fortova A, Koudelakova T, Chaloupkova R, Ishitsuka M, Nagata Y, Damborsky J, Prokop Z (2011) Biochemical characteristics of the novel haloalkane dehalogenase DatA, isolated from the plant pathogen Agrobacterium tumefaciens C58. Appl Environ Microbiol 77:1881–1884

    PubMed  CAS  Google Scholar 

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. United States Geological Survey, Virginia

    Google Scholar 

  • Hong H, Benink HA, Zhang Y, Yang Y, Uyeda HT, Engle JW, Severin GW, McDougall MG, Barnhart TE, Klaubert DH, Nickles RJ, Fan F, Cai W (2011) HaloTag: a novel reporter gene for positron emission tomography. Am J Transl Res 3:392–403

    PubMed  CAS  Google Scholar 

  • Hutter W, Peter J, Swoboda H, Hampel W, Rosenberg E, Krämer D, Kellner R (1995) Development of a microbial bioassay for chlorinated and brominated hydrocarbons. Anal Chim Acta 306:237–241

    CAS  Google Scholar 

  • Jakubowska N, Zygmunt B, Polkowska Å», ZabiegaÅ‚a B, NamieÅ›nik J (2009) Sample preparation for gas chromatographic determination of halogenated volatile organic compounds in environmental and biological samples. J Chromatogr A 1216:422–441

    PubMed  CAS  Google Scholar 

  • Janssen DB (2004) Evolving haloalkane dehalogenases. Curr Opin Chem Biol 8:150–159

    PubMed  CAS  Google Scholar 

  • Janssen DB, Pries F, van der Ploeg J, Kazemier B, Terpstra P, Witholt B (1989) Cloning of 1,2-dichloroethane degradation genes of Xanthobacter autotrophicus GJ10 and expression and sequencing of the dhlA gene. J Bacteriol 171:6791–6799

    PubMed  CAS  Google Scholar 

  • Janssen DB, Pries F, van der Ploeg JR (1994) Genetics and biochemistry of dehalogenating enzymes. Annu Rev Microbiol 48:163–191

    PubMed  CAS  Google Scholar 

  • Janssen DB, Dinkla IJT, Poelarends GJ, Terpstra P (2005) Bacterial degradation of xenobiotic compounds: Evolution and distribution of novel enzyme activities. Environ Microbiol 7:1868–1882

    PubMed  CAS  Google Scholar 

  • Jesenska A, Sedlacek I, Damborsky J (2000) Dehalogenation of haloalkanes by Mycobacterium tuberculosis H37Rv and other mycobacteria. Appl Environ Microbiol 66:219–222

    PubMed  CAS  Google Scholar 

  • Jesenska A, Pavlova M, Strouhal M, Chaloupkova R, Tesinska I, Monincova M, Prokop Z, Bartos M, Pavlik I, Rychlik I, Möbius P, Nagata Y, Damborsky J (2005) Cloning, biochemical properties, and distribution of mycobacterial haloalkane dehalogenases. Appl Environ Microbiol 71:6736–6745

    PubMed  CAS  Google Scholar 

  • Jesenska A, Monincova M, Koudelakova T, Hasan K, Chaloupkova R, Prokop Z, Geerlof A, Damborsky J (2009) Biochemical characterization of haloalkane dehalogenases DrbA and DmbC, representatives of a novel subfamily. Appl Environ Microbiol 75:5157–5160

    PubMed  CAS  Google Scholar 

  • Johnson AK, Zawadzka AM, Deobald LA, Crawford RL, Paszczynski AJ (2008) Novel method for immobilization of enzymes to magnetic nanoparticles. J Nanopart Res 10:1009–1025

    CAS  Google Scholar 

  • Jordana S, Piera EB (2004) Natural groundwater quality and health. Geol Acta 2:175–188

    CAS  Google Scholar 

  • Karube I, Nomura Y (2000) Enzyme sensors for environmental analysis. J Mol Catal B Enzym 10:177–181

    CAS  Google Scholar 

  • Keuning S, Janssen DB, Witholt B (1985) Purification and characterization of hydrolytic haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. J Bacteriol 163:635–639

    PubMed  CAS  Google Scholar 

  • Kmunicek J, Hynkova K, Jedlicka T, Nagata Y, Negri A, Gago F, Wade RC, Damborsky J (2005) Quantitative analysis of substrate specificity of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. Biochem 44:3390–3401

    CAS  Google Scholar 

  • Koudelakova T, Chovancova E, Brezovsky J, Monincova M, Fortova A, Jarkovsky J, Damborsky J (2011) Substrate specificity of haloalkane dehalogenases. Biochem J 435:345–354

    PubMed  CAS  Google Scholar 

  • Koudelakova T, Bidmanova S, Dvorak P, Pavelka A, Chaloupkova R, Prokop Z, Damborsky J (2013) Haloalkane dehalogenases: Biotechnological applications. Biotechnol J 8:32–45

    Google Scholar 

  • Kulakova AN, Larkin MJ, Kulakov LA (1997) The plasmid-located haloalkane dehalogenase gene from Rhodococcus rhodochrous NCIMB 13064. Microbiol 143:109–115

    CAS  Google Scholar 

  • Lal R, Pandey G, Sharma P, Kumari K, Malhotra S, Pandey R, Raina V, Kohler HP, Holliger C, Jackson C, Oakeshott JG (2010) Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev 74:58–80

    PubMed  CAS  Google Scholar 

  • Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568:200–210

    PubMed  CAS  Google Scholar 

  • Leiner MJP, Hartmann P (1993) Theory and practice in optical pH sensing. Sens Actuators B: Chem 11:281–289

    CAS  Google Scholar 

  • Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O’Kennedy R (2003) Advances in biosensors for detection of pathogens in food and water. Enzym Microb Technol 32:3–13

    CAS  Google Scholar 

  • Lin J (2000) Recent development and applications of optical and fiber-optic pH sensors. Trends Anal Chem 19:541–552

    CAS  Google Scholar 

  • Lobnik A, Oehme I, Murkovic I, Wolfbeis OS (1998) pH optical sensors based on sol-gels: Chemical doping versus covalent immobilization. Anal Chim Acta 367:159–165

    CAS  Google Scholar 

  • Long F, Zhu A, Sheng JW, He M, Shi H-C (2009) Matrix effects on the microcystin-LR fluorescent immunoassay based on optical biosensor. Sens 9:3000–3010

    CAS  Google Scholar 

  • Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382

    PubMed  CAS  Google Scholar 

  • Maliszewska I, Wilk KA (2008) Detection of some chloroorganic compounds by a microbial sensor system. Mat Sci-Pol 26:451–458

    CAS  Google Scholar 

  • Marazuela MD, Moreno-Bondi MC (2002) Fiber-optic biosensors – an overview. Anal Bioanal Chem 372:664–682

    PubMed  CAS  Google Scholar 

  • Mateo C, Palomo JM, van Langen LM, van Rantwijk F, Sheldon RA (2004) A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol Bioeng 86:273–276

    PubMed  CAS  Google Scholar 

  • Mehrvar M, Bis C, Scharer JM, Moo-Young M, Luong JH (2000) Fiber-optic biosensors – trends and advances. Anal Sci 16:677–692

    CAS  Google Scholar 

  • Mena-Benitez GL, Gandia-Herrero F, Graham S, Larson TR, McQueen-Mason SJ, French CE, Rylott EL, Bruce NC (2008) Engineering a catabolic pathway in plants for the degradation of 1,2-dichloroethane. Plant Physiol 147:1192–1198

    PubMed  CAS  Google Scholar 

  • Nagata Y, Nariya T, Ohtomo R, Fukuda M, Yano K, Takagi M (1993) Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of γ-hexachlorocyclohexane in Pseudomonas paucimobilis. J Bacteriol 175:6403–6410

    PubMed  CAS  Google Scholar 

  • Nagata Y, Miyauchi K, Damborsky J, Manova K, Ansorgova A, Takagi M (1997) Purification and characterization of a haloalkane dehalogenase of a new substrate class from a γ-hexachlorocyclohexane-degrading bacterium, Sphingomonas paucimobilis UT26. Appl Environ Microbiol 63:3707–3710

    PubMed  CAS  Google Scholar 

  • Orellana G, Haigh D (2008) New trends in fiber-optic chemical and biological sensors. Curr Anal Chem 4:273–295

    CAS  Google Scholar 

  • Park B-W, Yoon D-Y, Kim D-S (2010) Recent progress in bio-sensing techniques with encapsulated enzymes. Biosens Bioelectron 26:1–10

    PubMed  CAS  Google Scholar 

  • Pavlova M, Klvana M, Prokop Z, Chaloupkova R, Banas P, Otyepka M, Wade RC, Tsuda M, Nagata Y, Damborsky J (2009) Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat Chem Biol 5:727–733

    PubMed  CAS  Google Scholar 

  • Peter J, Hutter W, Stöllnberger W, Hampel W (1996) Detection of chlorinated and brominated hydrocarbons by an ion sensitive whole cell biosensor. Biosens Bioelectron 11:1215–1219

    CAS  Google Scholar 

  • Peter J, Hutter W, Stöllnberger W, Karner F, Hampel W (1997) Semicontinuous detection of 1,2-dichloroethane in water samples using Xanthobacter autotrophicus GJ10 encapsulated in chitosan beads. Anal Chem 69:2077–2079

    PubMed  CAS  Google Scholar 

  • Pitter P (2009) Physicochemical properties of water. In: Pitter P (ed) Hydrochemistry (in Czech), 4th edn. VÅ CHT Publisher, Praha

    Google Scholar 

  • Poelarends GJ, Wilkens M, Larkin MJ, van Elsas JD, Janssen DB (1998) Degradation of 1,3-dichloropropene by Pseudomonas cichorii 170. Appl Environ Microbiol 64:2931–2936

    PubMed  CAS  Google Scholar 

  • Prokop Z, Damborsky J, Nagata Y, Janssen DB (2004) Method of production of optically active hydrocarbons and alcohols using hydrolytic dehalogenation catalysed by haloalkane dehalogenases. Patent WO 2006079295 (A2)

    Google Scholar 

  • Prokop Z, Damborsky J, Oplustil F, Jesenska A, Nagata Y (2005) Method of detoxification of yperite by using haloalkane dehalogenases. Patent CZ 298287; EA 011311; NZ 564218; EP 1899022; AU 2006254625 B2; US 7,888,103; JP 4793947; WO 2006128390 (A1)

    Google Scholar 

  • Prokop Z, Oplustil F, DeFrank J, Damborsky J (2006) Enzymes fight chemical weapons. Biotechnol J 1:1370–1380

    PubMed  CAS  Google Scholar 

  • Prokop Z, Sato Y, Brezovsky J, Mozga T, Chaloupkova R, Koudelakova T, Jerabek P, Stepankova V, Natsume R, van Leeuwen JG, Janssen DB, Florian J, Nagata Y, Senda T, Damborsky J (2010) Enantioselectivity of haloalkane dehalogenases and its modulation by surface loop engineering. Angew Chem Int Ed Engl 49:6111–6115

    PubMed  CAS  Google Scholar 

  • Reardon KF, Campbell DW, Müller C (2009) Optical fiber enzymatic biosensor for reagentless measurement of ethylene dibromide. Eng Life Sci 9:291–297

    CAS  Google Scholar 

  • Rodriguez-Mozaz S, Marco M-P, López de Alda MJ, Barceló D (2004) Biosensors for environmental applications: Future development trends. Pure Appl Chem 76:723–752

    CAS  Google Scholar 

  • Rodriguez-Mozaz S, López de Alda MJ, Marco M-P, Barceló D (2005) Biosensors for environmental monitoring. A global perspective. Talanta 65:291–297

    CAS  Google Scholar 

  • Rodriguez-Mozaz S, López de Alda MJ, Barceló D (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem 386:1025–1041

    PubMed  CAS  Google Scholar 

  • Rodriguez-Mozaz S, López de Alda MJ, Barceló D (2007) Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography-mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. J Chromatogr A 1152:97–115

    PubMed  CAS  Google Scholar 

  • Rogers KR (1995) Biosensors for environmental applications. Biosens Bioelectron 10:533–541

    CAS  Google Scholar 

  • Rogers KR (2006) Recent advances in biosensor techniques for environmental monitoring. Anal Chim Acta 568:222–231

    PubMed  CAS  Google Scholar 

  • Sallis PJ, Armfield SJ, Bull AT, Hardman DJ (1990) Isolation and characterization of a haloalkane halidohydrolase from Rhodococcus erythropolis Y2. J Gen Microbiol 136:115–120

    PubMed  CAS  Google Scholar 

  • Samorski M (2008) Immobilisierung von Haloalkan-Dehalogenasen und Prozessentwicklung der enzymatischen Produktion von optisch aktivem 2,3-Dichlor-1-propanol. University Stuttgart, Dissertation

    Google Scholar 

  • Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30:489–511

    PubMed  CAS  Google Scholar 

  • Sato Y, Monincova M, Chaloupkova R, Prokop Z, Ohtsubo Y, Minamisawa K, Tsuda M, Damborsky J, Nagata Y (2005) Two rhizobial strains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, encode haloalkane dehalogenases with novel structures and substrate specificities. Appl Environ Microbiol 71:4372–4379

    PubMed  CAS  Google Scholar 

  • Schanstra JP, Kingma J, Janssen DB (1996) Specificity and kinetics of haloalkane dehalogenase. J Biol Chem 271:14747–14753

    PubMed  CAS  Google Scholar 

  • Scheidleder A, Grath J, Winkler G, Stärk U, Koreimann C, Gmeiner C, Nixon S, Casillas J, Gravesen P, Leonard J, Elvira M (1999) Groundwater quality and quantity in Europe. Office for Official Publications of the European Communities, Copenhagen

    Google Scholar 

  • Scholtz R, Leisinger T, Suter F, Cook AM (1987) Characterization of 1-chlorohexane halidohydrolase, a dehalogenase of wide substrate range from an Arthrobacter sp. J Bacteriol 169:5016–5021

    PubMed  CAS  Google Scholar 

  • Schulman SG, Chen S, Bai F, Leiner MJP, Weis L, Wolfbeis OS (1995) Dependence of the fluorescence of immobilized 1-hydroxypyrene-3,6,8-trisulfonate on solution pH: Extension of the range of applicability of a pH fluorosensor. Anal Chim Acta 304:165–170

    CAS  Google Scholar 

  • Sharma SK, Sehgal N, Kumar A (2003) Biomolecules for development of biosensors and their applications. Curr Appl Phys 3:307–316

    Google Scholar 

  • Stucki G, Thüer M (1995) Experiences of a large-scale application of 1,2-dichloroethane degrading microorganisms for groundwater treatment. Environ Sci Technol 29:2339–2345

    PubMed  CAS  Google Scholar 

  • Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: A review. Biosens Bioelectron 26:1788–1799

    PubMed  CAS  Google Scholar 

  • Swanson PE (1999) Dehalogenases applied to industrial-scale biocatalysis. Curr Opin Biotechnol 10:365–369

    PubMed  CAS  Google Scholar 

  • SzymaÅ„ski W, Westerbeek A, Janssen DB, Feringa BL (2011) A simple enantioconvergent and chemoenzymatic synthesis of optically active α-substituted amides. Angew Chem Int Ed Engl 50:10712–10715

    PubMed  Google Scholar 

  • Taniguchi Y, Kawakami M (2010) Application of HaloTag protein to covalent immobilization of recombinant proteins for single molecule force spectroscopy. Langmuir 26:10433–10436

    PubMed  CAS  Google Scholar 

  • Thévenot DR, Toth K, Durst RA, Wilson GS (1999) Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem 71:2333–2348

    Google Scholar 

  • United States Environmental Protection Agency (2011) Edition of the drinking water standards and health advisories. Office of Water United States Environmental Protection Agency. Washington, DC

    Google Scholar 

  • Wanekaya AK, Chen W, Mulchandani A (2008) Recent biosensing developments in environmental security. J Environ Monit 10:703–712

    PubMed  CAS  Google Scholar 

  • Wang P, Liu Q (2010) Introduction. In: Wang P, Liu Q (eds) Cell-based biosensors: Principles and applications, 1st edn. Artech House, Norwood

    Google Scholar 

  • Wencel D, MacCraith BD, McDonagh C (2009) High performance optical ratiometric sol–gel-based pH sensor. Sens Actuators B: Chem 139:208–213

    CAS  Google Scholar 

  • Westerbeek A, SzymaÅ„ski W, Wijma HJ, Marrink SJ, Feringa BL, Janssen DB (2011) Kinetic resolution of α-bromoamides: Experimental and theoretical investigation of highly enantioselective reactions catalyzed by haloalkane dehalogenases. Adv Synth Catal 353:931–944

    CAS  Google Scholar 

  • Wolfbeis OS (2005) Materials for fluorescence-based optical chemical sensors. J Mater Chem 15:2657–2669

    CAS  Google Scholar 

  • Wolfbeis OS, Rodriguez NV, Werner T (1992) LED-compatible fluorosensor for measurement of near-neutral pH values. Mikrochim Acta 108:133–141

    CAS  Google Scholar 

  • Yokota T, Omori T, Kodama T (1987) Purification and properties of haloalkane dehalogenase from Corynebacterium sp. strain m15-3. J Bacteriol 169:4049–4054

    PubMed  CAS  Google Scholar 

  • Zhang Y, So M-K, Loening AM, Yao H, Gambhir SS, Rao J (2006) HaloTag protein-mediated site-specific conjugation of bioluminescent proteins to quantum dots. Angew Chem Int Ed Engl 45:4936–4940

    PubMed  CAS  Google Scholar 

  • Ziegler C, Göpel W (1998) Biosensor development. Curr Opin Chem Biol 2:585–591

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to Prof. Ken Reardon (Colorado State University, USA) for introducing us to the field of optical biosensors, Prof. Thomas Scheper (University Hannover, Germany) and Prof. Jaromir Hubalek (Brno University of Technology, Czech Republic) for construction of the first prototypes of our optical biosensors and to Dr. Martin Trtilek (Photon System Instruments, Czech Republic) for their miniaturization. The work was supported by the Grant Agency of the Czech Republic (P207/12/0775, P503/12/0572), the Grant Agency of the Czech Academy of Sciences (IAA401630901) and the European Regional Development Fund (CZ.1.05/2.1.00/01.0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbynek Prokop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Bidmanova, S., Hrdlickova, E., Koudelakova, T., Damborsky, J., Prokop, Z. (2014). Online Monitoring of Biodegradation Processes Using Enzymatic Biosensors. In: Nojiri, H., Tsuda, M., Fukuda, M., Kamagata, Y. (eds) Biodegradative Bacteria. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54520-0_8

Download citation

Publish with us

Policies and ethics