Skip to main content

Monitoring Microbial Community Dynamics to Evaluate Bioremediation

  • Chapter
  • First Online:
Book cover Biodegradative Bacteria

Abstract

Bioremediation can be an effective treatment strategy at contaminated sites when applied appropriately and implemented properly. Thus it is important to have methods that can be used to reliably assess biodegradation potential and ultimately the feasibility and performance of bioremediation as a treatment approach. While an important component of site monitoring, decreasing trends in contaminant concentrations can result from physical processes, do not document that loss is due to biodegradation, and can be difficult to discern in practice. Therefore direct measures of microbes responsible for biodegradation of compounds have been developed. These methods fall into two categories: direct measure of biodegradation functional genes using methods such as quantitative PCR and microarrays and indirect measures in changes in microbial community structure using methods such as PCR-DGGE and T-RFLP when target genes are unknown. This chapter describes the various molecular methods being used and examples where they have been applied for the assessment of environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BSS:

Benzylsuccinate synthase

BTEX:

Benzene, toluene, ethylbenzene, and xylenes

DCE:

cis-1,2-dichloroethene

DGGE:

Denaturing gradient gel electrophoresis

FGA:

Functional gene array

ISP:

Iron–sulfur protein

MNA:

Monitored natural attenuation

MPN:

Most probable number

NAH:

Naphthalene dioxygenase

PAHs:

Polycyclic aromatic hydrocarbons

PCE:

Tetrachloroethene

PCR:

Polymerase chain reaction

PHE:

Phenol hydroxylase

qPCR:

Quantitative polymerase chain reaction

RMO:

Ring-hydroxylating toluene monooxygenase

RT-PCR:

Reverse transcriptase-polymerase chain reaction

RT-qPCR:

Reverse transcriptase-quantitative polymerase chain reaction

TCE:

Trichloroethene

TOD:

Toluene/benzene dioxygenase

TOL:

Toluene/xylene monooxygenase

T-RFLP:

Terminal-restriction fragment length polymorphism

References

  • Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU (2010) Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol 12(10):2783–2796. doi:10.1111/j.1462-2920.2010.02248.x

    PubMed  CAS  Google Scholar 

  • Achong GR, Rodriguez AM, Spormann AM (2001) Benzylsuccinate synthase of Azoarcus sp. strain T: cloning, sequencing, transcriptional organization, and its role in anaerobic toluene and m-xylene mineralization. J Bacteriol 183(23):6763–6770. doi:10.1128/jb.183.23.6763-6770.2001

    Article  PubMed  CAS  Google Scholar 

  • Ahn Y, Sanseverino J, Sayler GS (1999) Analyses of polycyclic aromatic hydrocarbon-degrading bacteria isolated from contaminated soils. Biodegradation 10(2):149–157. doi:10.1023/a:1008369905161

    Article  PubMed  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    PubMed  CAS  Google Scholar 

  • Baldwin BR, Nakatsu CH, Nies L (2008) Enumeration of aromatic oxygenase genes to evaluate monitored natural attenuation at gasoline-contaminated sites. Water Res 42(3):723–731. doi:10.1016/j.watres.2007.07.052

    Article  PubMed  CAS  Google Scholar 

  • Baldwin BR, Biernacki A, Blair J, Purchase MP, Baker JM, Sublette K, Davis G, Ogles D (2010) Monitoring gene expression to evaluate oxygen infusion at a gasoline-contaminated site. Environ Sci Technol 44(17):6829–6834. doi:10.1021/es101356t

    Article  PubMed  CAS  Google Scholar 

  • Bell TH, Yergeau E, Martineau C, Juck D, Whyte LG, Greer CW (2011) Identification of nitrogen-incorporating bacteria in petroleum-contaminated Arctic soils by using (15)N DNA-based stable isotope probing and pyrosequencing. Appl Environ Microbiol 77(12):4163–4171. doi:10.1128/aem.00172-11

    Article  PubMed  CAS  Google Scholar 

  • Beller HR, Edwards EA (2000) Anaerobic toluene activation by benzylsuccinate synthase in a highly enriched methanogenic culture. Appl Environ Microbiol 66(12):5503–5505. doi:10.1128/aem.66.12.5503-5505.2000

    Article  PubMed  CAS  Google Scholar 

  • Beller HR, Kane SR, Legler TC, Alvarez PJJ (2002) A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene. Environ Sci Technol 36(18):3977–3984. doi:10.1021/es025556w

    Article  PubMed  CAS  Google Scholar 

  • Bertoni G, Martino M, Galli E, Barbieri P (1998) Analysis of the gene cluster encoding toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Appl Environ Microbiol 64(10): 3626–3632

    PubMed  CAS  Google Scholar 

  • Biegert T, Fuchs G, Heider J (1996) Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate. Eur J Biochem 238(3):661–668. doi:10.1111/j.1432-1033.1996.0661w.x

    Article  PubMed  CAS  Google Scholar 

  • Bordenave S, Goni-Urriza MS, Caumette P, Duran R (2007) Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl Environ Microbiol 73(19): 6089–6097. doi:10.1128/aem.01352-07

    Article  PubMed  CAS  Google Scholar 

  • Busch-Harris J, Sublette K, Roberts KP, Landrum C, Peacock AD, Davis G, Ogles D, Holmes WE, Harris D, Ota C, Yang X, Kolhatkar A (2008) Bio-traps coupled with molecular biological methods and stable isotope probing demonstrate the in situ biodegradation potential of MTBE and TBA in gasoline-contaminated aquifers. Ground Water Monit R 28(4):47–62. doi:10.1111/j.1745-6592.2008.00216.x

    Article  CAS  Google Scholar 

  • Butler CS, Mason JR (1996) Structure-function analysis of the bacterial aromatic ring-hydroxylating dioxygenases. In: Poole RK (ed) Advances in microbial physiology, vol 38. Academic, London, pp 47–84. doi:10.1016/s0065-2911(08)60155-1

    Google Scholar 

  • Cao B, Nagarajan K, Loh K-C (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85(2):207–228. doi:10.1007/s00253-009-2192-4

    Article  PubMed  CAS  Google Scholar 

  • Cavalca L, Dell’Amico E, Andreoni V (2004) Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes. Appl Microbiol Biotechnol 64(4):576–587. doi:10.1007/s00253-003-1449-6

    Article  PubMed  CAS  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3(2):351–368. doi:10.1007/bf00129093

    Article  CAS  Google Scholar 

  • Da Silva MLB, Alvarez PJJ (2004) Enhanced anaerobic biodegradation of benzene-toluene-ethylbenzene-xylene-ethanol mixtures in bioaugmented aquifer columns. Appl Environ Microbiol 70(8):4720–4726. doi:10.1128/aem.70.8.4720-4726.2004

    Article  PubMed  Google Scholar 

  • DeAngelis KM, Wu CH, Beller HR, Brodie EL, Chakraborty R, DeSantis TZ, Fortney JL, Hazen TC, Osman SR, Singer ME, Tom LM, Andersen GL (2011) PCR amplification-Independent methods for detection of microbial communities by the high-density microarray PhyloChip. Appl Environ Microbiol 77:6313–6322. doi:10.1128/aem.05262-11

    Article  PubMed  CAS  Google Scholar 

  • DeBruyn JM, Chewning CS, Sayler GS (2007) Comparative quantitative prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAcdioxygenase genes in coal tar contaminated sediments. Environ Sci Technol 41(15):5426–5432. doi:10.1021/es070406c

    Article  PubMed  CAS  Google Scholar 

  • DeBruyn JM, Mead TJ, Wilhelm SW, Sayler GS (2009) PAH biodegradative genotypes in Lake Erie sediments: evidence for broad geographical distribution of pyrene-degrading Mycobacteria. Environ Sci Technol 43(10):3467–3473. doi:10.1021/es803348g

    Article  PubMed  CAS  Google Scholar 

  • Denef VJ, Park J, Rodrigues JLM, Tsoi TV, Hashsham SA, Tiedje JM (2003) Validation of a more sensitive method for using spotted oligonucleotide DNA microarrays for functional genomics studies on bacterial communities. Environ Microbiol 5(10):933–943. doi:10.1046/j.1462-2920.2003.00490.x

    Article  PubMed  CAS  Google Scholar 

  • DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53(3):371–383. doi:10.1007/s00248-006-9134-9

    Article  PubMed  CAS  Google Scholar 

  • Dionisi HM, Chewning CS, Morgan KH, Menn F-M, Easter JP, Sayler GS (2004) Abundance of dioxygenase genes similar to Ralstonia sp. strain U2 nagAcis correlated with naphthalene concentrations in coal tar-contaminated freshwater sediments. Appl Environ Microbiol 70(7):3988–3995. doi:10.1128/aem.70.7.3988-3995.2004

    Article  PubMed  CAS  Google Scholar 

  • DiStefano TD, Gossett JM, Zinder SH (1991) Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Appl Environ Microbiol 57(8):2287–2292

    PubMed  CAS  Google Scholar 

  • Dominguez R, da Silva M, McGuire T, Adamson D, Newell C, Alvarez P (2008) Aerobic bioremediation of chlorobenzene source-zone soil in flow-through columns: performance assessment using quantitative PCR. Biodegradation 19(4):545–553. doi:10.1007/s10532-007-9160-4

    Article  PubMed  CAS  Google Scholar 

  • Duarte GF, Rosado AS, Seldin L, de Araujo W, van Elsas JD (2001) Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes. Appl Environ Microbiol 67(3):1052–1062

    Article  PubMed  CAS  Google Scholar 

  • Duetz WA, de Jong C, Williams PA, van Andel JG (1994) Competition in chemostat culture between Pseudomonas strains that use different pathways for the degradation of toluene. Appl Environ Microbiol 60(8):2858–2863

    PubMed  CAS  Google Scholar 

  • Erickson BD, Mondello FJ (1993) Enhanced biodegradation of polychlorinated biphenyls after site-directed mutagenesis of a biphenyl dioxygenase gene. Appl Environ Microbiol 59(11):3858–3862

    PubMed  CAS  Google Scholar 

  • Ferrero M, Llobet-Brossa E, Lalucat J, García-Valdés E, Rosselló-Mora R, Bosch R (2002) Coexistence of two distinct copies of naphthalene degradation genes in Pseudomonas strains isolated from the western Mediterranean region. Appl Environ Microbiol 68(2):957–962. doi:10.1128/aem.68.2.957-962.2002

    Article  PubMed  CAS  Google Scholar 

  • Field JA, Sierra-Alvarez R (2004) Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Rev Environ Sci Biotechnol 3(3):185–254. doi:10.1007/s11157-004-4733-8

    Article  CAS  Google Scholar 

  • Freedman DL, Gossett JM (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55(9):2144–2151

    PubMed  CAS  Google Scholar 

  • Gentry T, Wickham G, Schadt C, He Z, Zhou J (2006) Microarray applications in microbial ecology research. Micro Ecol 52(2):159–175. doi:10.1007/s00248-006-9072-6

    Article  CAS  Google Scholar 

  • Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11(3):236–243. doi:10.1016/s0958-1669(00)00090-2

    Article  PubMed  CAS  Google Scholar 

  • Hamady M, Knight R (2009) Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res 19(7):1141–1152. doi:10.1101/gr.085464.108

    Article  PubMed  CAS  Google Scholar 

  • Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’haeseleer P, Holman H-YN, Osman S, Lu Z, Van Nostrand JD, Deng Y, Zhou J, Mason OU (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330(6001):204–208. doi:10.1126/science.1195979

    Article  PubMed  CAS  Google Scholar 

  • Heider J, Spormann AM, Beller HR, Widdel F (1998) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22(5):459–473. doi:10.1111/j.1574-6976.1998.tb00381.x

    Article  CAS  Google Scholar 

  • Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S, Ellis DE, Ebersole RC (2002) Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 68(2):485–495. doi:10.1128/aem.68.2.485-495.2002

    Article  PubMed  CAS  Google Scholar 

  • Hendrickx B, Dejonghe W, Boënne W, Brennerova M, Cernik M, Lederer T, Bucheli-Witschel M, Bastiaens L, Verstraete W, Top EM, Diels L, Springael D (2005) Dynamics of an oligotrophic bacterial aquifer community during contact with a groundwater plume contaminated with benzene, toluene, ethylbenzene, and xylenes: an In situ mesocosm study. Appl Environ Microbiol 71(7):3815–3825. doi:10.1128/aem.71.7.3815-3825.2005

    Article  PubMed  CAS  Google Scholar 

  • Hendrickx B, Dejonghe W, Faber F, Boenne W, Bastiaens L, Verstraete W, Top EM, Springael D (2006a) PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites. FEMS Microbiol Ecol 55(2):262–273. doi:10.1111/j.1574-6941.2005.00018.x

    Article  PubMed  CAS  Google Scholar 

  • Hendrickx B, Junca H, Vosahlova J, Lindner A, Rüegg I, Bucheli-Witschel M, Faber F, Egli T, Mau M, Schlömann M, Brennerova M, Brenner V, Pieper DH, Top EM, Dejonghe W, Bastiaens L, Springael D (2006b) Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. J Microbiol Meth 64(2):250–265. doi:10.1016/j.mimet.2005.04.018

    Article  CAS  Google Scholar 

  • Huang XJ, Lee LS, Nakatsu C (2000) Impact of animal waste lagoon effluents on chlorpyrifos degradation in soils. Environ Toxicol Chem 19(12):2864–2870. doi:10.1002/etc.5620191202

    Article  CAS  Google Scholar 

  • Iwai S, Kurisu F, Urakawa H, Yagi O, Kasuga I, Furumai H (2008) Development of an oligonucleotide microarray to detect di- and monooxygenase genes for benzene degradation in soil. FEMS Microbiol Lett 285(1):111–121. doi:10.1111/j.1574-6968.2008.01223.x

    Article  PubMed  CAS  Google Scholar 

  • Iwai S, Johnson TA, Chai B, Hashsham SA, Tiedje JM (2011) Comparison of the specificities and efficacies of primers for aromatic dioxygenase gene analysis of environmental samples. Appl Environ Microbiol 77(11):3551–3557. doi:10.1128/aem.00331-11

    Article  PubMed  CAS  Google Scholar 

  • Johnson GR, Olsen RH (1995) Nucleotide sequence analysis of genes encoding a toluene/benzene-2-monooxygenase from Pseudomonas sp. strain JS150. Appl Environ Microbiol 61(9):3336–3346

    PubMed  CAS  Google Scholar 

  • Kahng H-Y, Malinverni JC, Majko MM, Kukor JJ (2001) Genetic and functional analysis of the tbc operons for catabolism of alkyl- and chloroaromatic compounds in Burkholderia sp. Strain JS150. Appl Environ Microbiol 67(10):4805–4816. doi:10.1128/aem.67.10.4805-4816.2001

    Article  PubMed  CAS  Google Scholar 

  • Kane SR, Beller HR, Legler TC, Anderson RT (2002) Biochemical and genetic evidence of benzylsuccinate synthase in toluene-degrading, ferric iron-reducing Geobacter metallireducens. Biodegradation 13(2):149–154. doi:10.1023/a:1020454831407

    Article  PubMed  CAS  Google Scholar 

  • Kao CM, Chen CS, Tsa FY, Yang KH, Chien CC, Liang SH, Yang CA, Chen SC (2010) Application of real-time PCR, DGGE fingerprinting, and culture-based method to evaluate the effectiveness of intrinsic bioremediation on the control of petroleum-hydrocarbon plume. J Hazard Mater 178(1–3):409–416. doi:10.1016/j.jhazmat.2010.01.096

    Article  PubMed  CAS  Google Scholar 

  • Kasai Y, Takahata Y, Manefield M, Watanabe K (2006) RNA-based stable isotope probing and isolation of anaerobic benzene-degrading bacteria from gasoline contaminated groundwater. Appl Environ Microbiol 72(5):3586–3592

    Article  PubMed  CAS  Google Scholar 

  • Kazy S, Monier A, Alvarez P (2010) Assessing the correlation between anaerobic toluene degradation activity and bssA concentrations in hydrocarbon-contaminated aquifer material. Biodegradation 21(5):793–800. doi:10.1007/s10532-010-9344-1

    Article  PubMed  CAS  Google Scholar 

  • Khan AA, Wang R-F, Cao W-W, Doerge DR, Wennerstrom D, Cerniglia CE (2001) Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67(8):3577–3585. doi:10.1128/aem.67.8.3577-3585.2001

    Article  PubMed  CAS  Google Scholar 

  • Kniemeyer O, Fischer T, Wilkes H, Glöckner FO, Widdel F (2003) Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl Environ Microbiol 69(2):760–768. doi:10.1128/aem.69.2.760-768.2003

    Article  PubMed  CAS  Google Scholar 

  • Kong W, Nakatsu CH (2010) Optimization of RNA extraction for PCR quantification of aromatic compound degradation genes. Appl Environ Microbiol 76(4):1282–1284. doi:10.1128/aem.01939-09

    Article  PubMed  CAS  Google Scholar 

  • Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77(22):7962–7974. doi:10.1128/aem.05402-11

    Article  PubMed  CAS  Google Scholar 

  • Krieger CJ, Beller HR, Reinhard M, Spormann AM (1999) Initial reactions in anaerobic oxidation of m-xylene by the denitrifying bacterium Azoarcus sp. strain T. J Bacteriol 181(20):6403–6410

    PubMed  CAS  Google Scholar 

  • Kropp KG, Davidova IA, Suflita JM (2000) Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture. Appl Environ Microbiol 66(12):5393–5398. doi:10.1128/aem.66.12.5393-5398.2000

    Article  PubMed  CAS  Google Scholar 

  • Laurie AD, Lloyd-Jones G (1999) The phn Genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J Bacteriol 181(2): 531–540

    PubMed  CAS  Google Scholar 

  • Laurie AD, Lloyd-Jones G (2000) Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl Environ Microbiol 66(5):1814–1817. doi:10.1128/aem.66.5.1814-1817.2000

    Article  PubMed  CAS  Google Scholar 

  • Leahy JG, Olsen RH (1997) Kinetics of toluene degradation by toluene-oxidizing bacteria as a function of oxygen concentration, and the effect of nitrate. FEMS Microbiol Ecol 23(1):23–30. doi:10.1111/j.1574-6941.1997.tb00387.x

    Article  CAS  Google Scholar 

  • Lee PKH, Warnecke F, Brodie EL, Macbeth TW, Conrad ME, Andersen GL, Alvarez-Cohen L (2012) Phylogenetic microarray analysis of a microbial community performing reductive dechlorination at a TCE-contaminated site. Environ Sci Technol 46(2):1044–1054. doi:10.1021/es203005k

    Article  PubMed  CAS  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63(11):4516–4522

    PubMed  CAS  Google Scholar 

  • Lloyd-Jones G, Laurie AD, Hunter DWF, Fraser R (1999) Analysis of catabolic genes for naphthalene and phenanthrene degradation in contaminated New Zealand soils. FEMS Microbiol Ecol 29(1):69–79. doi:10.1111/j.1574-6941.1999.tb00599.x

    Article  CAS  Google Scholar 

  • Lu X, Wilson JT, Kampbell DH (2006) Relationship between Dehalococcoides DNA in ground water and rates of reductive dechlorination at field scale. Water Res 40(16):3131–3140. doi:10.1016/j.watres.2006.05.030

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Deng Y, Van Nostrand JD, He Z, Voordeckers J, Zhou A, Lee Y-J, Mason OU, Dubinsky EA, Chavarria KL, Tom LM, Fortney JL, Lamendella R, Jansson JK, D'Haeseleer P, Hazen TC, Zhou J (2011) Microbial gene functions enriched in the deepwater horizon deep-sea oil plume. ISME J 6(2):451–460. doi:10.1038/ismej.2011.91

    Article  PubMed  Google Scholar 

  • Maymó-Gatell X, Anguish T, Zinder SH (1999) Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by “Dehalococcoides ethenogenes” 195. Appl Environ Microbiol 65(7):3108–3113

    PubMed  Google Scholar 

  • Mohanty SR, Kollah B, Brodie EL, Hazen TC, Roden EE (2011) 16S rRNA gene microarray analysis of microbial communities in ethanol-stimulated subsurface sediment. Microbes Environ 26(3):261–265. doi:10.1264/jsme2.ME11111

    Article  PubMed  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    PubMed  CAS  Google Scholar 

  • Muyzer G, Hottentrager S, Teske AP, Wawer C (1996) Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA-A new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans A, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual, vol 3.4.4. Kluwer Academic Publishers, Nowell, pp 1–23

    Google Scholar 

  • Nakatsu CH, Marsh TL (2007) Analysis of microbial communities with denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism. In: Reddy CA, Beveridge TL, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Methods for general and molecular bacteriology, 3rd edn. ASM, Washington, DC, pp 909–923

    Google Scholar 

  • Nakatsu CH, Torsvik V, Øvreås L (2000) Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Sci Soc Am J 64(4):1382–1388

    Article  CAS  Google Scholar 

  • Nakatsu CH, Carmosini N, Baldwin B, Beasley F, Kourtev P, Konopka A (2005) Soil microbial community responses to additions of organic carbon substrates and heavy metals (Pb and Cr). Appl Environ Microbiol 71(12):7679–7689. doi:10.1128/aem.71.12.7679-7689.2005

    Article  PubMed  CAS  Google Scholar 

  • Nebe J, Baldwin BR, Kassab RL, Nies L, Nakatsu CH (2009) Quantification of aromatic oxygenase genes to evaluate enhanced bioremediation by oxygen releasing materials at a gasoline-contaminated site. Environ Sci Technol 43(6):2029–2034. doi:10.1021/es900146f

    Article  PubMed  CAS  Google Scholar 

  • Ní Chadhain SM, Norman RS, Pesce KV, Kukor JJ, Zylstra GJ (2006) Microbial dioxygenase gene population shifts during polycyclic aromatic hydrocarbon biodegradation. Appl Environ Microbiol 72(6):4078–4087. doi:10.1128/aem.02969-05

    Article  PubMed  Google Scholar 

  • Ogino A, Koshikawa H, Nakahara T, Uchiyama H (2001) Succession of microbial communities during a biostimulation process as evaluated by DGGE and clone library analyses. J Appl Microbiol 91(4):625–635. doi:10.1046/j.1365-2672.2001.01424.x

    Article  PubMed  CAS  Google Scholar 

  • Ogram A, Sun W, Brockman FJ, Fredrickson JK (1995) Isolation and characterization of RNA from low-biomass deep-subsurface sediments. Appl Environ Microbiol 61(2):763–768

    PubMed  CAS  Google Scholar 

  • Pandey J, Chauhan A, Jain RK (2009) Integrative approaches for assessing the ecological sustainability of in situ bioremediation. FEMS Microbiol Rev 33(2):324–375. doi:10.1111/j.1574-6976.2008.00133.x

    Article  PubMed  CAS  Google Scholar 

  • Parales RE, Resnick SM, Yu C-L, Boyd DR, Sharma ND, Gibson DT (2000) Regioselectivity and enantioselectivity of naphthalene dioxygenase during arene cis-dihydroxylation: control by phenylalanine 352 in the α subunit. J Bacteriol 182(19):5495–5504. doi:10.1128/jb.182.19.5495-5504.2000

    Article  PubMed  CAS  Google Scholar 

  • Park J-W, Crowley D (2006) Dynamic changes in nahAc gene copy numbers during degradation of naphthalene in PAH-contaminated soils. Appl Microbiol Biotech 72(6):1322–1329. doi:10.1007/s00253-006-0423-5

    Article  CAS  Google Scholar 

  • Rhee S-K, Liu X, Wu L, Chong SC, Wan X, Zhou J (2004) Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl Environ Microbiol 70(7):4303–4317. doi:10.1128/aem.70.7.4303-4317.2004

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Martínez E, Pérez E, Schadt C, Zhou J, Massol-Deyá A (2006) Microbial diversity and bioremediation of a hydrocarbon-contaminated aquifer (Vega Baja, Puerto Rico). Int J Environ Res Public Health 3(3):292–300

    Article  PubMed  Google Scholar 

  • Roling WFM, Milner MG, Jones DM, Fratepietro F, Swannell RPJ, Daniel F, Head IM (2004) Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol 70(5):2603–2613

    Article  PubMed  Google Scholar 

  • Selesi D, Jehmlich N, von Bergen M, Schmidt F, Rattei T, Tischler P, Lueders T, Meckenstock RU (2010) Combined genomic and proteomic approaches identify gene clusters involved in anaerobic 2-methylnaphthalene degradation in the sulfate-reducing enrichment culture N47. J Bacteriol 192(1):295–306. doi:10.1128/jb.00874-09

    Article  PubMed  CAS  Google Scholar 

  • Shendure J, Ji HL (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145. doi:10.1038/nbt1486

    Article  PubMed  CAS  Google Scholar 

  • Spormann AM, Widdel F (2000) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11(2):85–105. doi:10.1023/a:1011122631799

    Article  PubMed  CAS  Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Ann Rev Microbiol 39:321–346

    Article  CAS  Google Scholar 

  • Stephen JR, Chang YJ, Gan YD, Peacock A, Pfiffner SM, Barcelona MJ, White DC, Macnaughton SJ (1999) Microbial characterization of a JP-4 fuel-contaminated site using a combined lipid biomarker/polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)-based approach. Environ Microbiol 1(3):231–241

    Article  PubMed  CAS  Google Scholar 

  • Sublette K, Peacock A, White D, Davis G, Ogles D, Cook D, Kolhatkar R, Beckmann D, Yang X (2006) Monitoring subsurface microbial ecology in a sulfate-amended, gasoline-contaminated aquifer. Ground Water Monit R 26(2):70–78. doi:10.1111/j.1745-6592.2006.00072.x

    Article  CAS  Google Scholar 

  • Taylor PM, Janssen PH (2005) Variations in the abundance and identity of class II aromatic ring-hydroxylating dioxygenase genes in groundwater at an aromatic hydrocarbon-contaminated site. Environ Microbiol 7(1):140–146. doi:10.1111/j.1462-2920.2004.00679.x

    Article  PubMed  CAS  Google Scholar 

  • Taylor PM, Medd JM, Schoenborn L, Hodgson B, Janssen PH (2002) Detection of known and novel genes encoding aromatic ring-hydroxylating dioxygenases in soils and in aromatic hydrocarbon-degrading bacteria. FEMS Microbiol Lett 216(1):61–66. doi:10.1111/j.1574-6968.2002.tb11415.x

    Article  PubMed  CAS  Google Scholar 

  • Tuomi PM, Salminen JM, Jørgensen KS (2004) The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers. FEMS Microbiol Ecol 51(1):99–107. doi:10.1016/j.femsec.2004.07.011

    Article  PubMed  CAS  Google Scholar 

  • Widada J, Nojiri H, Kasuga K, Yoshida T, Habe H, Omori T (2002a) Molecular detection and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sites. Appl Microbiol Biotechnol 58(2):202–209. doi:10.1007/s00253-001-0880-9

    Article  PubMed  CAS  Google Scholar 

  • Widada J, Nojiri H, Omori T (2002b) Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation. Appl Microbiol Biotechnol 60:45–59. doi:10.1007/s00253-002-1072-y

    Article  PubMed  CAS  Google Scholar 

  • Wilson MS, Bakermans C, Madsen EL (1999) In situ, real-time catabolic gene expression: extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater. Appl Environ Microbiol 65(1):80–87

    PubMed  CAS  Google Scholar 

  • Winderl C, Schaefer S, Lueders T (2007) Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase (bssA) genes as a functional marker. Environ Microbiol 9(4):1035–1046. doi:10.1111/j.1462-2920.2006.01230.x

    Article  PubMed  CAS  Google Scholar 

  • Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T (2008) Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74(3):792–801. doi:10.1128/aem.01951-07

    Article  PubMed  CAS  Google Scholar 

  • Witzig R, Junca H, Hecht H-J, Pieper DH (2006) Assessment of toluene/biphenyl dioxygenase gene diversity in benzene-polluted soils: links between benzene biodegradation and genes similar to those encoding isopropylbenzene dioxygenases. Appl Environ Microbiol 72(5):3504–3514. doi:10.1128/aem.72.5.3504-3514.2006

    Article  PubMed  CAS  Google Scholar 

  • Yagi JM, Madsen EL (2009) Diversity, abundance, and consistency of microbial oxygenase expression and biodegradation in a shallow contaminated aquifer. Appl Environ Microbiol 75(20):6478–6487. doi:10.1128/aem.01091-09

    Article  PubMed  CAS  Google Scholar 

  • Yeates C, Holmes AJ, Gillings MR (2000) Novel forms of ring-hydroxylating dioxygenases are widespread in pristine and contaminated soils. Environ Microbiol 2(6):644–653. doi:10.1046/j.1462-2920.2000.00147.x

    Article  PubMed  CAS  Google Scholar 

  • Yergeau E, Arbour M, Brousseau R, Juck D, Lawrence JR, Masson L, Whyte LG, Greer CW (2009) Microarray and real-time PCR analyses of the responses of high-Arctic soil bacteria to hydrocarbon pollution and bioremediation treatments. Appl Environ Microbiol 75(19):6258–6267. doi:10.1128/aem.01029-09

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy H. Nakatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Baldwin, B.R., Ogles, D., Nakatsu, C.H. (2014). Monitoring Microbial Community Dynamics to Evaluate Bioremediation. In: Nojiri, H., Tsuda, M., Fukuda, M., Kamagata, Y. (eds) Biodegradative Bacteria. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54520-0_15

Download citation

Publish with us

Policies and ethics