Quantum Monte Carlo Level Spectroscopy

  • Hidemaro Suwa
Part of the Springer Theses book series (Springer Theses)


The new method of analysis combining the level spectroscopy and the quantum Monte Carlo method will be developed in this chapter. The finite-size scaling method performs well and elicits the universality class correctly for many continuous phase transitions. However, for the Kosterlitz-Thouless transition where the correlation length exponentially diverges at the critical point, this conventional scaling method does not work practically because exponentially large systems need to be calculated. For overcoming the difficulty of the analysis, the level spectroscopy was invented. This method has been combined with the diagonalization so far; the application has been restricted to small-size systems. For the combination with the Monte Carlo method, the precise gap calculation is inevitable. Thus, we will devise an improved gap estimator that can overcome the notorious difficulty of the numerical inverse Laplace transformation. We will demonstrate the effectiveness for the spin-Peierls model and the \(\mathrm{S}=1\) alternating bond model. The quantum Monte Carlo technique for the twisted boundary condition for detecting the transition point will also be presented.


Level spectroscopy Improved gap estimator Inverse Laplace transformation 


  1. 1.
    Affleck, I. (1985). The quantum Hall effects, \(\sigma \)-models at \(\theta = \pi \) and quantum spin chains. Nuclear Physics B, 257, 397–406.MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Affleck, I., Gepner, D., Schulz, H. J., & Ziman, T. (1989). Critical behaviour of spin-s Heisenberg antiferromagnetic chains: Analytic and numerical results. Journal of Physics A: Mathematical and General, 22, 511.MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Affleck, I., & Haldane, F. D. M. (1987). Critical theory of quantum spin chains. Physics Review B, 36, 5291–5300.MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Arovas, D. P., Auerbach, A., & Haldane, F. D. M. (1988). Extended Heisenberg models of antiferromagnetism: Analogies to the fractional quantum Hall effect. Physics Review Letters, 60, 531–534.MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Barber, M. N. (1983). Finite-size scaling. In C. Domb & J. L. Lebowitz (Eds.), Phase transitions and critical phenomena (pp. 146–268). New York: Academic Press.Google Scholar
  6. 6.
    Bietenholz, W., Pochinsky, A., & Wiese, U. J. (1995). Meron-cluster simulation of the \(\theta \) vacuum in the 2D O(3) model. Physics Review Letters, 75, 4524.ADSCrossRefGoogle Scholar
  7. 7.
    Cabra, D. C., Honecker, A., & Pujol, P. (1998). Magnetization plateaux in N-leg spin ladders. Physics Review B, 58, 6241–6257.ADSCrossRefGoogle Scholar
  8. 8.
    Cardy, J. L. (1996). Scaling and renormalization in statistical physics. Cambridge: Cambridge University Press.Google Scholar
  9. 9.
    Chandrasekharan, S., Cox, J., Osborn, J., & Wiese, U. J. (2003). Meron-cluster approach to systems of strongly correlated electrons. Nuclear Physics B, 673, 405.MathSciNetADSCrossRefMATHGoogle Scholar
  10. 10.
    Chandrasekharan, S., & Wiese, U. J. (1999). Meron-cluster solution of fermion sign problems. Physics Review Letters, 83, 3116.ADSCrossRefGoogle Scholar
  11. 11.
    des Cloizaux, J., Pearson, J. J. (1962). Spin-wave spectrum of the antiferromagnetic linear chain. Physics Review, 128, 2131.Google Scholar
  12. 12.
    Cooper, F., Freedman, B., Preston, D. (1982). Solving \(\phi _{1,2}^4\) field theory with Monte Carlo. Nuclear Physics B, 210(FS6), 210–228.Google Scholar
  13. 13.
    Delfino, G., & Mussardo, G. (1998). Non-integrable aspects of the multi-frequency sine-Gordon model. Nuclear Physics B, 516, 675–703.MathSciNetADSCrossRefMATHGoogle Scholar
  14. 14.
    Edwards, R., Goodman, J., & Sokal, A. (1991). Multi-grid Monte Carlo (ii). two-dimensional XY model. Nuclear Physics B, 354, 289–327.ADSCrossRefGoogle Scholar
  15. 15.
    Fabrizio, M., Gogolin, A., & Nersesyan, A. (2000). Critical properties of the double-frequency sine-Gordon model with applications. Nuclear Physics B, 580, 647–687.MathSciNetADSCrossRefMATHGoogle Scholar
  16. 16.
    Fáth, G., & Sólyom, J. (1993). Isotropic spin-1 chain with twisted boundary condition. Physics Review B, 47, 872–881.ADSCrossRefGoogle Scholar
  17. 17.
    Gubernatis, J. E., Jarrell, M., Silver, R. N., & Sivia, D. S. (1991). Quantum Monte Carlo simulations and maximum entropy: Dynamics from imaginary-time data. Physics Review B, 44, 6011–6029.ADSCrossRefGoogle Scholar
  18. 18.
    Gull, E., Werner, P., Parcollet, O., Troyer, M. (2008). Continuous-time auxiliary-field Monte Carlo for quantum impurity models. Europhysics Letters, 82, 57003.Google Scholar
  19. 19.
    Haldane, F. D. M. (1982). Spontaneous dimerization in the \({S}=\frac{1}{2}\) Heisenberg antiferromagnetic chain with competing interactions. Physics Review B, 25, 4925.ADSCrossRefGoogle Scholar
  20. 20.
    Huscroft, C., Gass, R., & Jarrell, M. (2000). Maximum entropy method of obtaining thermodynamic properties from quantum Monte Carlo simulations. Physics Review B, 61, 9300–9306.ADSCrossRefGoogle Scholar
  21. 21.
    Inoue, H., & Nomura, K. (1999). Magnetization plateau in the 1D S=1/2 spin chain with alternating next-nearest-neighbour coupling. Physics Letters A, 262, 96–102.Google Scholar
  22. 22.
    Kadanoff, L. P. (1980). Singularities near the bifurcation point of the Ashkin-Teller model. Physics Review B, 22, 1405–1408.MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Leo, Kadanoff. (1978). P.: Lattice Coulomb gas representations of two-dimensional problems. Journal of Physics A: Mathematical and General, 11, 1399–1417.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kato, Y., & Tanaka, A. (1994). Numerical study of the \(S=1\) antiferromagnetic spin chain with bond alternation. Journal of the Physical Society of Japan, 63, 1277–1280.ADSCrossRefGoogle Scholar
  25. 25.
    Kitazawa, A. (1997). Twisted boundary conditions of quantum spin chains near the Gaussian fixed points. Journal of Physics A: Mathematical and General, 30, L285–291.MathSciNetADSCrossRefMATHGoogle Scholar
  26. 26.
    Kitazawa, A., & Nomura, K. (1997). Critical properties of \(S=1\) bond-alternating XXZ chains and hidden \(Z_2 \times Z_2\) symmetry. Journal of the Physical Society of Japan, 66, 3944–3956.ADSCrossRefGoogle Scholar
  27. 27.
    Kohmoto, M., den Nijs, M., & Kadanoff Leo, P. (1981). Hamiltonian studies of the \(d=2\) Ashkin-Teller model. Physics Review B, 24, 5229.ADSCrossRefGoogle Scholar
  28. 28.
    Kohno, M., Takahashi, M., & Hagiwara, M. (1998). Low-temperature properties of the spin-1 antiferromagnetic Heisenberg chain with bond alternation. Physics Review B, 57, 1046–1051.ADSCrossRefGoogle Scholar
  29. 29.
    Kolb, M. (1985). Symmetry and boundary condition of planar spin systems. Physics Review B, 31, 7494–7496.ADSCrossRefGoogle Scholar
  30. 30.
    Kuboki, K., & Fukuyama, H. (1987). Spin-Peierls transition with competing interactions. Journal of the Physical Society of Japan, 56, 3126–3134.ADSCrossRefGoogle Scholar
  31. 31.
    Majumdar, C. K., & Ghosh, D. K. (1969). On next-nearest-neighbor interaction in linear chain, Part I. Journal of Mathematical Physics, 10, 1388–1398. doi:  10.1063/1.1664978.Google Scholar
  32. 32.
    Nakamura, M., & Todo, S. (2002). Order parameter to characterize valence-bond-solid states in quantum spin chains. Physics Review Letters, 89, 077, 204.Google Scholar
  33. 33.
    Nightingale, M. P. (1976). Scaling theory and finite systems. Physica A, 83, 561.ADSCrossRefGoogle Scholar
  34. 34.
    Nomura, K. (1995). Correlation functions of the 2D sine-Gordon model. Journal of Physics A: Mathematical and General, 28, 5451–5468.MathSciNetADSCrossRefMATHGoogle Scholar
  35. 35.
    Nomura, K., & Okamoto, K. (1994). Critical properties of \(S=\frac{1}{2}\) antiferromagnetic \(XXZ\) chain with next-nearest-neighbour interactions. Journal of Physics A: Mathematical and General, 27, 5773.MathSciNetADSCrossRefMATHGoogle Scholar
  36. 36.
    Nomura, K., & Okamoto, K. (2001). BKT transition and level spectroscopy. Butsuri, 56, 836.Google Scholar
  37. 37.
    Nomura, K., & Okamoto, K. (2002). BKT transition and level spectroscopy. Proceedings French-Japanese Symposium on Quantum Properties of Low-Dimensional Antiferromagnets (cond-mat/020172).Google Scholar
  38. 38.
    Okamoto, K., & Nomura, K. (1992). Fluid-dimer critical point in \(S=\frac{1}{2}\) antiferromagnetic Heisenberg chain with next nearest neighbor interactions. Physics Letters A, 169, 433.ADSCrossRefGoogle Scholar
  39. 39.
    Okamoto, K., & Sugiyama, T. (1988). Ground-state of spin-1/2 alternating Heisenberg-XY ferromagnet in one dimension. Journal of the Physical Society of Japan, 57, 1610–1620.ADSCrossRefGoogle Scholar
  40. 40.
    Sandvik, A. W. (1998). Stochastic method for analytic continuation of quantum Monte Carlo data. Physics Review B, 57, 10287–10290.Google Scholar
  41. 41.
    Schulz, H. J. (1986). Phase diagrams and correlation exponents for quantum spin chains of arbitrary spin quantum number. Physics Review B, 34, 6372.ADSCrossRefGoogle Scholar
  42. 42.
    Seiler, E., Stamatescu, I., Patrascioiu, A., & Linke, V. (1988). Critical behaviour, scaling and universality in some two-dimensional spin models. Nuclear Physics B, 305, 623–660.ADSCrossRefGoogle Scholar
  43. 43.
    Silver, R. N., Sivia, D. S., & Gubernatis, J. E. (1990). Maximum-entropy method for analytic continuation of quantum Monte Carlo data. Physics Review B, 41, 2380–2389.ADSCrossRefGoogle Scholar
  44. 44.
    Skilling, J. (1989). Classic maximum entropy. In J. Skilling (Ed.) Maximum entropy and Bayesian methods (p. 45). Boston: Kluwer Academic.Google Scholar
  45. 45.
    Todo, S., & Kato, K. (2001). Cluster algorithms for general-\(S\) quantum spin systems. Physics Review Letters, 87, 047203.Google Scholar
  46. 46.
    Tonegawa, T., & Harada, I. (1987). Ground-state properties of the one-dimensional isotropic spin-1/2 Heisenberg antiferromagnet with competing interactions. Journal of the Physical Society of Japan, 56, 2153–2167.ADSCrossRefGoogle Scholar
  47. 47.
    Totsuka, K., Nishiyama, Y., Hatano, N., & Suzuki, M. (1995). Isotropic spin-1 chains with bond alternation: Analytic and numerical studies. Journal of Physics: Condensed Matter, 7, 4895.ADSCrossRefGoogle Scholar
  48. 48.
    Werner, P., Oka, T., & Millis, A. J. (2009). Diagrammatic Monte Carlo simulation of nonequilibrium systems. Physics Review B, 79, 035320.Google Scholar
  49. 49.
    Witten, E. (1984). Non-abelian bosonization in two dimensions. Communications in Mathematical Physics, 92, 455–472.MathSciNetADSCrossRefMATHGoogle Scholar
  50. 50.
    Yamamoto, S. (1994). Ground-state properties of \(s=1\) antiferromagnetic Heisenberg chains with bond alternation. Journal of the Physical Society of Japan, 63, 4327–4330.Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of PhysicsBoston UniversityBostonUSA

Personalised recommendations